
Extensible Data Types with Ad-Hoc Polymorphism
MATTHEW TOOHEY, University of Toronto, Canada

YANNING CHEN, University of Toronto, Canada

ARA JAMALZADEH, University of Toronto, Canada

NINGNING XIE, University of Toronto, Canada

This paper proposes a novel language design that combines extensible data types, implemented through row

types and row polymorphism, with ad-hoc polymorphism, implemented through type classes. Our design

introduces several new constructs and constraints useful for generic operations over rows. We formalize our

design in a source calculus 𝜆⇒𝜌 , which elaborates into a target calculus F
⊗⊕
𝜔 . We prove that the target calculus is

type-safe and that the elaboration is sound, thus establishing the soundness of 𝜆⇒𝜌 . All proofs are mechanized

in the Lean 4 proof assistant. Furthermore, we evaluate our type system using the Brown Benchmark for Table

Types, demonstrating the utility of extensible rows with type classes for table types.

CCS Concepts: • Theory of computation → Type theory; Type structures; • Software and its engineer-
ing→ Data types and structures; Constraints; Polymorphism; Functional languages.

Additional Key Words and Phrases: Row polymorphism, Row constraints, Type classes, Elaboration

ACM Reference Format:
Matthew Toohey, Yanning Chen, Ara Jamalzadeh, and Ningning Xie. 2026. Extensible Data Types with

Ad-Hoc Polymorphism. Proc. ACM Program. Lang. 10, POPL, Article 20 (January 2026), 29 pages. https:

//doi.org/10.1145/3776662

1 Introduction
Modularity stands as a fundamental property in software development, making systems easier to

understand, maintain, and evolve. One significant challenge in achieving modularity in data types

has traditionally been the difficulty of extending them in a type-safe manner without breaking

existing code. This is where row types [Wand 1987] offer a compelling approach, which facilitates

the creation of extensible data types by allowing developers to add new fields to a data type without

compromising type safety or requiring widespread modifications across the codebase.

Rows are, at their core, a mapping from labels to types, effectively capturing the structure of

records and variants. Row types have been extensively studied in the literature [Cardelli and

Mitchell 1990; Harper and Pierce 1991; Leijen 2005; Rémy 1989, 1992; Shields and Meijer 2001;

Wand 1991], and have found various applications, particularly through row polymorphism, a form of

parametric polymorphism that enables abstraction over possible row extensions. Row types form the

basis for the object-oriented features [Rémy and Vouillon 1998] and polymorphic variants [Garrigue
1998] in OCaml, and are employed to express effect types [Hillerström and Lindley 2016; Leijen

2017; Lindley and Cheney 2012] and extensible choices in session types [Lindley and Morris 2017].

Authors’ Contact Information: Matthew Toohey, University of Toronto, Toronto, Canada, mtoohey@cs.toronto.edu; Yanning

Chen, University of Toronto, Toronto, Canada, yanning@cs.toronto.edu; Ara Jamalzadeh, University of Toronto, Toronto,

Canada, a.jamalzadeh@mail.utoronto.ca; Ningning Xie, University of Toronto, Toronto, Canada, ningningxie@cs.toronto.

edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2026 Copyright held by the owner/author(s).

ACM 2475-1421/2026/1-ART20

https://doi.org/10.1145/3776662

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

https://orcid.org/0009-0006-2253-7193
https://orcid.org/0009-0005-9608-0774
https://orcid.org/0009-0007-4728-8100
https://orcid.org/0000-0002-5961-1493
https://doi.org/10.1145/3776662
https://doi.org/10.1145/3776662
https://orcid.org/0009-0006-2253-7193
https://orcid.org/0009-0005-9608-0774
https://orcid.org/0009-0005-9608-0774
https://orcid.org/0009-0007-4728-8100
https://orcid.org/0000-0002-5961-1493
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776662
https://www.acm.org/publications/policies/artifact-review-and-badging-current

20:2 Matthew Toohey, Yanning Chen, Ara Jamalzadeh, and Ningning Xie

While parametrically polymorphic functions are useful for functions whose behaviours are

entirely uniform in its type argument, there often arises a need to leverage specific knowledge

about that type. Consider, for instance, defining an equality function that compares two values.

Such a function is not universally definable; more crucially, its behaviour may differ fundamentally

depending on the type. To address this, type classes [Wadler and Blott 1989] offer a powerful

approach for achieving ad-hoc polymorphism by allowing functions to be overloaded, with qualified
types [Jones 2003a] expressing type class constraints. For example, Haskell’s equality function (==)
has type ∀a. Eq a ⇒ a → a → Bool, indicating that any instantiation of a must be an instance

of the Eq type class. Type classes have been widely adopted in numerous languages including

Haskell [Jones 2003b], Rocq [Sozeau and Oury 2008], and Idris [Brady 2013], among others.

Now, let us consider defining an equality function for a record type. In scenarios where all

types within the record are fully specified and known to be comparable, the record’s equality

function (==) can be implemented by a pairwise comparison of corresponding fields. However,

explicitly defining such a type class instance for records can quickly become tedious. Moreover,

more significant challenges arise when defining such an equality function for extensible record
types. First, extending a record with additional fields requires programmers to re-provide a type

class instance (e.g. Eq) for the extended record, imposing an unnecessary and burdensome overhead.

Moreover, and more fundamentally, the inherent nature of row polymorphism prevents us from

fully specifying all types within a record. Consequently, we are unable to formally express that

all fields in the extended row must support the necessary type class constraint. This restricts the

practical extensibility of row types in the presence of ad-hoc polymorphism, as the inability to

express type class constraints on extended rows prevents the application of ad-hoc polymorphic

functions to these extensible data types. As a result, programmers are now forced to write significant

boilerplate code for functions operating on each record extension, and, as the record schemas

evolve, maintaining and updating the code becomes increasingly complex and error-prone.

This paper aims to address these challenges by providing a novel combination of extensible

data types, implemented through row types, with ad-hoc polymorphism, through type classes.

Specifically, we offer the following contributions:

• We contribute a novel design for a type system that features row polymorphism, records, variants,

and type classes, which allows us to express type class constraints over polymorphic rows (§2):

– We contribute a new form of All constraints, where a specific property holds across all fields.

– We propose ind, a new language construct for folding over rows.

– We introduce row commutativity annotations, allowing for strict row ordering when necessary.

Our system also supports commutativity-polymorphic functions, and we further establish a

commutativity hierarchy by treating non-commutativity as a subtype of commutativity.

– We support Lift, a type-level mapping of rows, which is particularly useful in systems where

rows can be higher-kinded [Hubers and Morris 2023].

– Additionally, we introduce a novel unlifting constraint, Split, which is useful for splitting

rows based on their type information.

• We formalize our design in 𝜆⇒𝜌 , a source calculus featuring row constraints (following abstracting
extensible data types [Morris and McKinna 2019]), first-class labels [Leijen 2004], the row folding

construct ind, and type classes, along with all the aforementioned features (§3).

• We present F
⊗⊕
𝜔 , a target calculus extending System F𝜔 with type-level lists and mappings (§4),

and prove its syntactic type soundness (Thms. 4.4 and 4.5). We then present a type-directed

elaboration of 𝜆⇒𝜌 into the target calculus F
⊗⊕
𝜔 , through dictionary-passing elaboration of type

classes, interpretations of row constraints, and a constraint-based strategy for elaborating ind
(§5). We prove elaboration soundness (Thms. 5.1 and 5.2).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

Extensible Data Types with Ad-Hoc Polymorphism 20:3

• We have mechanized all lemmas and proofs in the Lean 4 proof assistant (§6).

• We evaluate our type system using the benchmark for table types [Lu et al. 2021], demonstrating

that constraints over records can effectively express types for operations over table data (§7).

Our formalism is detailed, and some rules are elided for space reasons. The complete set of rules is

included in the appendix, which can be found in the artifact [Toohey et al. 2025] along with the

Lean 4 proofs.

2 Overview
This section introduces the features of our calculi: §2.1 explores row types that capture the structures

of records and variants, highlighting their utility in defining extensible data types; and §2.2 provides

background on type classes, and details our design that integrates them with extensible rows. For

clarity, we use Haskell-like syntax for examples throughout this section.

2.1 Extensible Rows, Records, and Variants
Row types, originally introduced by Wand [1987] to model inheritance, provide an approach to

typing extensible records and variants. Intuitively, rows define a mapping from labels to types. As

an example, consider the following row:

pet ≜ ⟨name ⊲ String, age ⊲ Int,weight ⊲ Float⟩
This pet row specifies three fields: name of type String, age of type Int , and weight of type Float .

Records. Row types are fundamental to representing the structure of records. Writing { l ⊲ e } for
record expressions, and Π for record types constructed from rows, we can define an expression:

alice = {name ⊲ “alice”, age ⊲ 2,weight ⊲ 2.4} : Πpet

Here, alice is a record of type Πpet . The Π acts as a type constructor that takes a row (in this case,

pet) and denotes a record type.

We use (++) for record concatenation, which comes in handy for extending records with new

fields. For example, we can extend alice with an additional favourite_food field:

alice++ { favourite_food ⊲ “fish” } : Π⟨name ⊲ String, age ⊲ Int,weight ⊲ Float, favourite_food ⊲ String⟩
We leave the details of which labels can appear together in a row abstract for now, as different row

theories exist [Morris and McKinna 2019].

To access a field within a record, we use the r/l operator, which projects field l out of record r .1

For instance, the function:

getName = 𝜆x . x/name

takes a record and returns the value of its name field. Thus, (getName alice) would return “alice” .

Variants. Similarly, the Σ type constructor builds variant types from rows. Writing [l ⊲ e] for
variant expressions, we can define:

shape ≜ ⟨rectangle ⊲Π⟨length ⊲ Float,width ⊲ Float⟩, circle ⊲Π⟨radius ⊲ Float⟩⟩
r = [rectangle ⊲{ length ⊲ 2.0,width ⊲ 3.0}] : Σ shape
Here, r is a rectangle with a length and a width, which is then injected into a variant type Σ shape.
A Σ shape variant can be either a rectangle or a circle.

To calculate the area of such a variant type, we define the area function:
1
For clarity, we use r/l to project a field from a record that may contain multiple fields. In the formalism (§3), we require

explicit projections (prj), and r/l is always used to project from singleton records. Similarly for variants, [l ⊲ e] can have a

type with multiple entries here, but the formalism requires explicit injections (inj) for creating non-singleton variants.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

20:4 Matthew Toohey, Yanning Chen, Ara Jamalzadeh, and Ningning Xie

area : Σ shape → Float
area = (𝜆x . (x/rectangle/length) ∗ (x/rectangle/width)) ▽ (𝜆y . 3.14 ∗ (y/circle/radius) ∗∗ 2)

The area function effectively matches the actual value of its input. It does so by combining (▽)
two functions: one for rectangle values (Σ⟨rectangle ⊲Π⟨length ⊲ Float,width ⊲ Float⟩⟩ → Float) and
another for circle values (Σ⟨circle ⊲Π⟨radius ⊲ Float⟩⟩ → Float). We again use the (/) operator to
access a field from a variant. Therefore, we have (area r) return 6.0.

Row polymorphism. Now, consider: what type should we give to getName? A simple choice

like Πpet → String would correctly type (getName alice). However, getName fundamentally only

requires its argument to have a name field, regardless of any other fields the argument may contain.

Row polymorphism offers a more explicit and powerful approach to typing such polymorphic

functions. FollowingMorris andMcKinna [2019], we express two key relations on rows, containment
and combination, as predicates in qualified types [Jones 2003a].
Specifically, since the argument to getName must contain a name field of some type a, we

represent the input row as a variable r and impose a constraint on it:

getName : ∀(a :★) (r : 𝑅). ⟨name ⊲ a⟩ <∼ r ⇒ Π r → a

Here, getName is polymorphic over two type variables a and r with different kinds: ★ is the base

kind for types, while 𝑅 is the kind for rows; we say r is a row variable. Moreover, ⟨name ⊲ a⟩ <∼ r is a
row containment constraint, signifying that the row r must contain ⟨name ⊲ a⟩. The function can

thus take any record Π r with a name field, and return a value of type a.
Row polymorphism is useful for preserving information about the original argument. For example,

consider a function that returns both the argument’s name field and the original record itself:

getNameAndRecord : ∀(a :★) (r : 𝑅). ⟨name ⊲ a⟩ <∼ r ⇒ Π r → (a,Π r)
getNameAndRecord = 𝜆x . (x/name, x)

In this case, getNameAndRecord ’s return type accurately preserves the full type of the argument x . If
we were to solely rely on structural subtyping with a type like ∀a.Π⟨name ⊲ a⟩ → (a,Π⟨name ⊲ a⟩)
for the function, we would lose information about any additional fields in the record.

Nowwe turn to the row combination constraint.2 We have seen how the (++) operator is useful for
concatenating records for extension, but this operation can also introduce complexities. Consider

the following function adapted from Wand [1991]:

𝜆x y . (x ++ y)/name

This function first concatenates two records, x and y , and then accesses the name field from the

resulting concatenated record. The challenge lies in determining its type: specifically, we know

that either x or y must contain a name field, but we do not know which one.

A row combination constraint (r1 ⊙ r2 ∼ r3) states that concatenating two rows, r1 and r2,
yields r3. Expressing row combination this way allows for various distinct interpretations of record

extensions, such as how duplicate labels are handled, which can be implemented as different

constraint resolution approaches. With this, we can precisely express the function’s type as:
3

∀(a :★) (r1 r2 r3 : 𝑅). (r1 ⊙ r2 ∼ r3, ⟨name ⊲ a⟩ <∼ r3) ⇒ Π r1 → Π r2 → a

2
While r1<∼ r is often only satisfiable when there exists a r2 such that r1 ⊙ r2 ∼ r , r1<∼ r more closely reflects the term structure

and thus the constraint elaboration (§5) [Morris and McKinna 2019]. Moreover, as we will see in §2.2, non-commutative row

containment does not straightforwardly correspond to row combination.

3
We often write (a b c : k) as a shorthand for (a : k) (b : k) (c : k) .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

Extensible Data Types with Ad-Hoc Polymorphism 20:5

This type incorporates two key constraints: (r1 ⊙ r2 ∼ r3) expresses that r3 is the result of concate-
nating rows r1 and r2, and (⟨name ⊲ a⟩ <∼ r3) expresses that the combined row r3 must have a name
field of type a. The function then takes two records Π r1 and Π r2, and produces a value of a.

First-class labels. So far we have been working with concrete labels; e.g. getName always gets
the name field. Our system supports first-class labels [Leijen 2004], thus allowing labels to be passed

as arguments to functions or returned as results, just like any other value.

First-class labels are useful for defining functions that are generic over labels. For example, it

lets us assign the following type to the record field access operator (/):
(/) : ∀(l : 𝐿) (a :★) (r : 𝑅). ⟨l ⊲ a⟩ <∼ r ⇒ Π r → ⌊l⌋ → a

Here, the function is polymorphic over three type variables: a label variable l of kind 𝐿, a row

variable r of kind 𝑅, and a type variable a of kind★. The constraint ⟨l ⊲ a⟩ <∼ r indicates that the row
r must contain a field l with type a. The function then accepts a record of type Π r , a label of type
⌊l⌋, and returns a value of type a. Note that ⌊l⌋ is the singleton type for label l.4 Thus if l : 𝐿, then
⌊l⌋ :★. For instance, we have name : ⌊name⌋. From this, we can derive the type we have seen for

getName : ∀(a :★) (r : 𝑅). ⟨name ⊲ a⟩ <∼ r ⇒ Π r → a.
We can extend first-class labels to first-class rows [Paszke and Xie 2023], denoting singleton

row types by ⌊r⌋. Often, though, we only need the label information from these rows, as the type

information can typically be retrieved from the records or variants where the row is used, much

like how a label l is used in the (/) operator. Therefore, in our system, we model first-class rows

simply by records whose fields always map to the unit type. For example, ⌊⟨name ⊲ String, age ⊲ Int⟩⌋
denotes Π⟨name ⊲Unit, age ⊲Unit⟩. Thus, if r :𝑅, then ⌊r⌋ :★. On the term level, correspondingly, we

write {name, age } to denote {name ⊲(), age ⊲() }. Instead of treating these as primitive constructs,

we will see how they can be defined in §2.2.

2.2 Extensible Rows with Ad-hoc Polymorphism
Having discussed extensible rows, we now turn to ad-hoc polymorphism via type classes, exploring

their various forms of combination with row polymorphism.

Ad-hoc polymorphism à la type classes. Consider defining a function that compares whether

one value is greater than another. Using type classes [Wadler and Blott 1989], we can write:

compare : ∀(a :★).Ord a ⇒ a → a → Bool
compare = 𝜆x y . (x > y)
Here, (Ord a) is a type class constraint which requires that any instantiation of a must be an

instance of the Ord type class, which provides the (>) method. For example, we expect Int and
String to be instances of Ord , but not functions, as directly comparing two functions is generally

challenging. For illustration purposes, we will use common type classes in our examples, including

Ord , Eq, etc. Type classes are typically implemented via dictionary-passing elaboration, where
evidence (called dictionaries) for type classes is explicitly propagated during a program elaboration

process which translates the source into a simpler target language without type classes.

Putting row and type class constraints together. By combining row polymorphism and ad-hoc

polymorphism, we can define useful ad-hoc polymorphic functions over row types such as:

compare_at : ∀(l : 𝐿) (a :★) (r : 𝑅). (Ord a, ⟨l ⊲ a⟩ <∼ r) ⇒ ⌊l⌋ → Π r → Π r → Bool
compare_at = 𝜆l x y . (x/l) > (y/l)

4
Avoid confusing singleton types, i.e. types with a single inhabitant, with singleton rows, i.e. rows with a single field.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

20:6 Matthew Toohey, Yanning Chen, Ara Jamalzadeh, and Ningning Xie

Notably, the function incorporates both row constraints and type class constraints: the (Ord a)
constraint requires a to be an instance of Ord , while (⟨l ⊲ a⟩ <∼ r) requires r to contain ⟨l ⊲ a⟩. The
function then takes a first-class label l of type ⌊l⌋, and two records x and y of type Π r , and returns

a Bool indicating whether x’s l field is greater than y’s.
As an example, recall that alice has type Π⟨name ⊲ String, age ⊲ Int,weight ⊲ Float⟩ (§2.1). Suppos-

ing Float is an instance of Ord , and bob is another record of the same type as alice, we can compare

alice and bob by their weights using:

compare_at weight alice bob

Combining type class constraints and row polymorphism. Now, let’s consider how we

may compare pets for equivalence. A straightforward approach involves defining a function that

compares two pets field by field:

eq_pet : Πpet → Πpet → Bool
eq_pet = 𝜆x y . (x/name) ==(y/name) && (x/age) ==(y/age) && (x/weight) ==(y/weight)
However, defining such a function for every record type can quickly become cumbersome. Instead,

we would prefer a general eq function that can compare fields within any given record type. This

presents challenges, especially with row polymorphism, where the exact fields within a row may

not be known. Moreover, we may expect some fields in a row to be comparable, but not others.

Our system supports ad-hoc polymorphism over row polymorphism. Specifically, assuming Eq is

a type class that provides the equality operator (==), we can define a generalized equality function

for row polymorphism with the following type:

eqΠ : ∀(r1 r : 𝑅). (r1 <∼ r, All Eq r1) ⇒ ⌊r1⌋ → Π r → Π r → Bool

Here, the constraint (r1 <∼ r) indicates that r contains r1. Additionally, the constraint (All Eq r1)
requires all fields within r1 to be instances of Eq. The function then receives an argument of type

⌊r1⌋, two records of type Π r , and returns a Bool. As an example:

eqΠ {name, age } alice bob
compares alice and bob based on their names and ages, but not their weights.

This form of constraint, (All Eq r1), is novel in our system, allowing us to express type class con-

straints over a polymorphic row. This constraint is satisfiable when all fields within r1 individually
satisfy Eq, thus allowing us to define functions polymorphic over rows where a specific property

holds across all fields, as exemplified by eqΠ . It is crucial to distinguish between a constraint like

(All C r) and a constraint like C (Π r). The former is derived automatically from individual

C instances for each field in r , a process that becomes evident during program elaboration. In

contrast, the latter represents a single type class instance for the type Π r . For instance, if Ord is

defined across r using (All Ord r), many different ordering functions can be implemented—such as

component-wise, lexicographical, or those based on specific distance metrics. Conversely, Ord (Π r)
would provide only a single, monolithic ordering definition.

Row constraints and commutativity. We have provided the type signature of eq; now, let’s
try to define it. As a first step, we can introduce a primitive that lifts a function (e.g. (==)) from
operating on a type to operating on all fields within a row (e.g. r1), accumulating the results.

However, before we introduce the primitive, a question is immediately raised: for a given row r ,
what order should we use to apply the function to its fields? While in the case of Eq, the order may

not matter, since equivalence comparisons are order-independent, consider a print function below:

print : ∀(r : 𝑅). (All Show r) ⇒ Π r → String

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

Extensible Data Types with Ad-Hoc Polymorphism 20:7

This function prints a record, where all fields in row r are instances of the Show type class. For

printing records, establishing a fixed order and thus deterministic behaviour would be valuable.

To this end, our system supports explicit commutativity annotations. Specifically, the type system

incorporates commutativity c and non-commutativity n as types with a kind 𝑈 . While rows are

easier to work with when handled commutatively, since they are considered equivalent up to

reordering, rows explicitly carry ordering information when treated as non-commutative.
5

We then generalize row constraints by incorporating these commutativity annotations. For

example, the following holds, where row combination is commutative:

⟨name ⊲ String⟩ ⊙𝑐 ⟨age ⊲ Int,weight ⊲ Float⟩ ∼ ⟨weight ⊲ Float, name ⊲ String, age ⊲ Int⟩
while the following does not, as non-commutative combination requires name to appear before

both age and weight , and age to appear before weight :

⟨name ⊲ String⟩ ⊙𝑛 ⟨age ⊲ Int,weight ⊲ Float⟩ ∼ ⟨weight ⊲ Float, name ⊲ String, age ⊲ Int⟩
Notably, non-commutative containment does not require the contained row to be a continuous
subset of the larger one, meaning some non-commutative containments cannot be expressed with

a single non-commutative concatenation. For example, the following holds:

⟨name ⊲ String,weight ⊲ Float⟩ <∼𝑛 ⟨name ⊲ String, age ⊲ Int,weight ⊲ Float⟩
while the following does not, since the entries in the contained row must appear in the same order

as they do in the larger one:

⟨age ⊲ Int, name ⊲ String⟩ <∼𝑛 ⟨name ⊲ String, age ⊲ Int,weight ⊲ Float⟩
Moreover, records, as well as variants, can also carry explicit commutativity annotations. Since we

incorporate commutativities as types, we can express a commutativity-polymorphic function:

splitName : ∀(a :★) (r r1 : 𝑅) (𝜇 :𝑈). (⟨name ⊲ a⟩ ⊙𝑛 r1∼ r) ⇒ Π𝜇 r → (a,Π𝜇 r1)
This function requires that concatenating ⟨name ⊲ a⟩ and r1, as non-commutative rows, yields r .
Therefore, if 𝜇 is instantiated to c (commutative), commutativity can automatically rearrange the

record to bring name to the front. On the other hand, if 𝜇 is instantiated to n (non-commutative),

this function only applies when name is precisely the first field in the record.

Furthermore, we consider non-commutative records (or variants, respectively) as subtypes of
commutative ones. Intuitively, non-commutative records carrymore information due to the inherent

ordering between fields, and this additional information can be “forgotten” through subtyping. To

our knowledge, our system is the first extensible row type system to feature both the commutativity

hierarchy and polymorphism over commutativity.

Lastly, we note that first-class rows always have their orders fixed. For instance, ⌊⟨name ⊲ String,
age ⊲ Int⟩⌋ denotes Π𝑛 ⟨name ⊲Unit, age ⊲Unit⟩. This fixed ordering often aligns with the intended

use of first-class rows, which can also be made commutative through subtyping.

Folding over rows. We are now ready to introduce our operator ind (short for “induction”),

which intuitively takes a base value and folds over a row’s entries. Using ind , we define eqΠ as

follows:

eqΠ : ∀(r1 r : 𝑅). (r1 <∼𝑐 r, All Eq r1) ⇒ ⌊r1⌋ → Π𝑐 r → Π𝑐 r → Bool
eqΠ = 𝜆(w : ⌊r1⌋) x y . ind (𝜆a : 𝑅. Bool) r1 (𝜆l acc. acc && (x/l ==y/l)) True
5
Alternatively, instead of using annotations on the type level, we may track commutativity in the kind of the row, which

would allow folding to be limited to non-commutative rows. However, that would then require a non-commutative row

even when the ordering does not matter. Also, commutativity polymorphism would likely require kind polymorphism, as

the row kind would depend on commutativity.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

20:8 Matthew Toohey, Yanning Chen, Ara Jamalzadeh, and Ningning Xie

Note that the function takes a w of type ⌊r1⌋ and two records of type Π𝑐 r , returning a Bool.
Commutativity polymorphism is unnecessary here since row types do not appear in the output,

so the function can still be used with non-commutative inputs via subtyping. The heavy lifting is

performed by ind , which takes four arguments in the form ind (𝜆a : 𝑅. t) r e1 e2. Here, (𝜆a : 𝑅. t) is
a type-level function, r is a row type of kind 𝑅, e1 is the folding function, and e2 is the initial value,
with the following types:

6

e1 : ∀(r1 r2 r3 : 𝑅) (l : 𝐿) (b :★). (r1 ⊙𝑛 ⟨l ⊲ b⟩ ∼ r2, r2 ⊙𝑛 r3∼ r) ⇒ ⌊l⌋ → t [r1/a] → t [r2/a]
e2 : t [⟨⟩/a]
At each step, e1 receives a label ⌊l⌋, as well as the accumulated value of type t [r1/a] (where [r1/a]
denotes type substitution). It then returns a new value of type t [r2/a], where r2 is the result of
concatenating r1 and ⟨l ⊲ b⟩. The second constraint states that r2 and r3 concatenate to r , so r3
contains the entries in r which have not yet been processed. Notably, we allow the type t to depend
on the type of the row that has been folded. In the case of eq, t is simply Bool; we will explore
examples where this substitution proves useful later. Thus, e2 as the initial value has type t [⟨⟩/a],
where a is substituted by the empty row. Moreover, the row constraints in e1 are non-commutative.

This means that once r is fixed, ind will fold over rows in a predetermined order. Lastly, we remark

that the argument w is not used, as its primary purpose is to provide the singleton type ⌊r1⌋, which
is a common pattern with singleton types. Note that w is explicitly annotated to allow the type

variable r1 to be passed as an argument to ind . For the remainder of this section, we will often

omit type annotations and assume type variables from the signature are automatically brought

into scope; this behaviour is consistent with our formalism.

As another example, we define print as follows:

print : ∀(r : 𝑅). (All Show r) ⇒ Π𝑛 r → String
print = 𝜆x . ind (𝜆r : 𝑅. String) r

(𝜆l acc. if acc =="" then show (x/l) else acc ++ ", "++ show (x/l)) ""
Here, print takes a non-commutative record Π𝑛 r , and provides ind with the order of r , a function
that accumulates the strings, and an empty string as the initial value.

The ind construct is highly expressive, allowing us to fold over not just records, but also variants.

For instance, we can define a general equality function eqΣ for variants as follows:

eqΣ : ∀(r : 𝑅).All Eq r ⇒ Σ𝑐 r → Σ𝑐 r → Bool
eqΣ = ind (𝜆a : 𝑅. Σ𝑐 a → Σ𝑐 r → Bool) r

(𝜆l acc. acc ▽ (𝜆x . (𝜆y . False) ▽ (𝜆y . x/l ==y/l) ▽ (𝜆y . False))) (𝜆x y . True)
Here, we construct a function that compares x with y by folding over all possible cases of x . At
each step, (𝜆a : 𝑅. Σ𝑐 a → Σ𝑐 r → Bool) constructs a function. This function takes cases of x
corresponding to the subrow Σ𝑐 a, along with y of type Σ𝑐 r , and returns a Bool. The initial value
corresponds to when x is an empty variant, which should never occur, so it simply returns True.
The folding function, at each step, takes a label l and the accumulated function acc, and extends

the function to handle the case when x is l. The body is another function of type Σ𝑐 r → Bool.
The inner function is also composed using (▽): it returns (x/l ==y/l) when y is also l, and False
otherwise. Intuitively, the final result is a function with nested matches: first on x , and then on y .
The function returns True only if x and y have the same label, and that label maps to equivalent

values.

Lastly, we note that commutative records or variants can be made non-commutative using ind .
In particular, we define order r which simply expands to the following definitions:

6
With higher kinds, r1, r2, r3 will all be of kind 𝑅𝑘 for some k; see §3 for the complete typing rules.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

Extensible Data Types with Ad-Hoc Polymorphism 20:9

(orderΠ r) :: Π𝑐 r → Π𝑛 r ≜ 𝜆x . ind (𝜆a : 𝑅.Π𝑛 a) r (𝜆l acc. acc ++{ l ⊲ x/l }) { }
(orderΣ r) :: Σ𝑐 r → Σ𝑛 r ≜ ind (𝜆a : 𝑅. Σ𝑛 a) r (𝜆l acc. acc ▽ (𝜆x . [l ⊲ x/l])) (𝜆x . x)
Notably, these functions must be used with care: the r parameter should be fixed, e.g. through its

occurrence in a non-commutative record, to ensure that it can be instantiated deterministically.

Now that we have covered type classes over simple types, we turn our focus to type classes over

type constructors. Before that, we need type-level lifting.

Mapping, lifting, and higher kinds. Consider a row ⟨name ⊲ String, age ⊲ Int⟩. Suppose we
would like to apply Maybe to each field, effectively turning each field into a maybe value: name
maps to type Maybe String, and age maps to type Maybe Int .

We provide an explicit constructor, called Lift , which acts as a type-level mapping [Chlipala 2010;

Hubers andMorris 2023]. For example, Lift Maybe ⟨name ⊲ String, age ⊲ Int⟩7 returns ⟨name ⊲Maybe
String, age ⊲Maybe Int⟩. We can implement a function with such a type as:

lift_maybe : ∀(r : 𝑅) (𝜇 :𝑈).Π𝜇 r → Π𝜇 (Lift Maybe r)
lift_maybe = 𝜆x . ind (𝜆a : 𝑅.Π𝜇 (Lift Maybe a)) r (𝜆l acc. acc ++{ l ⊲ Just (x/l) }) { }
lift_maybe {name ⊲ “alice”, age ⊲ 2} -- {name ⊲ Just“alice”, age ⊲ Just 2}

While we have primarily discussed rows with fields of kind★ so far, the Lift operator also makes

it useful to support higher-kinded rows. Specifically, given an Int and a higher-kinded row:

⟨stack ⊲ List, optional ⊲Maybe⟩ : 𝑅★→★

applying Lift (𝜆a. a Int)⟨stack ⊲ List, optional ⊲Maybe⟩ yields ⟨stack ⊲ List Int, optional ⊲Maybe Int⟩.
There are two notable things. First, the row’s fields are of kind ★→ ★. We denote the kind of

such a row as 𝑅★→★
. In other words, the kind 𝑅 now explicitly carries a kind annotation; we often

omit this annotation when it can be inferred from the context. Second, (𝜆a. a Int) is a type-level
function

8
, which can be fully annotated as (𝜆a :★ → ★. a Int). More generally, Lift takes a type

function of kind k1 → k2, a row of kind 𝑅k1 , and returns a row of kind 𝑅k2 .

We are now ready to define the first-class row operator ⌊r⌋ (§2.1). The type-level operator ⌊r⌋
can be expressed as Π𝑛 (Lift (𝜆a.Unit) r). Similarly, we can define a corresponding term-level

operator that applies to non-commutative records and turns each field into a ().9

Functors and monads. We now present the definition of fmap, which maps a function f over a

record whose fields are types where the type constructors are functors:

fmapΠ : ∀(r : 𝑅★→★) (a b :★) (𝜇 :𝑈). (All Functor r)
⇒ (a → b) → Π𝜇 (Lift (𝜆c. c a) r) → Π𝜇 (Lift (𝜆c. c b) r)

fmapΠ = 𝜆f x . ind (𝜆a.Π𝜇 (Lift (𝜆c. c b) a)) r (𝜆l acc. acc ++{ l ⊲ fmap f (x/l) }) { }
Here, r is a row of kind ★ → ★. The input record x has type Π𝜇 (Lift (𝜆c. c a) r), meaning each

field’s type is a field from r applied to a. The resulting record’s fields are then the corresponding

fields from r applied to b. The definition simply uses ind to apply fmap f to each field.

Similarly, we can define fmapΣ that maps over a variant:

fmapΣ : ∀(r : 𝑅★→★) (a b :★) (𝜇 :𝑈). (All Functor r)
⇒ (a → b) → Σ𝜇 (Lift (𝜆c. c a) r) → Σ𝜇 (Lift (𝜆c. c b) r)

7
We could make the lifting operation implicit, writing Maybe ⟨name ⊲ String, age ⊲ Int ⟩ directly [Hubers and Morris 2023].

However, we choose to keep lifting explicit for clarity as well as consistency with other constructs like ind .
8
Similarly, Maybe can be eta-expanded to 𝜆a.Maybe a.

9
We can define the term-level operator 𝜆 (x : Π𝑛 r) . ind (Π𝑛 (Lift (𝜆a.Unit))) r (𝜆l acc. acc ++{ l ⊲() }) { }.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

20:10 Matthew Toohey, Yanning Chen, Ara Jamalzadeh, and Ningning Xie

fmapΣ = 𝜆f x . ind (𝜆d . Σ𝜇 (Lift (𝜆c. c a) d) → Σ𝜇 (Lift (𝜆c. c b) d))
r (𝜆l acc. acc ▽ (𝜆y . [l ⊲ fmap f (y/l)])) (𝜆y . y) x

Lastly, let us consider monads as another example, here focusing on their definitions for records.

returnΠ : ∀(r : 𝑅★→★) (a :★). (All Monad r) ⇒ a → Π𝑐 (Lift (𝜆b. b a) r)
returnΠ = 𝜆x . ind (𝜆c.Π𝑐 (Lift (𝜆b. b a) c)) r (𝜆l acc. acc ++{ l ⊲ return x }) { }
The returnΠ function takes a value x of type a, and constructs a record where each field maps to

(return x), where r : 𝑅★→★
and all its fields are Monad instances. As examples, we have:

r ≜ returnΠ 2 : Π𝑐 ⟨maybe ⊲Maybe Int, list ⊲ List Int⟩ -- {maybe ⊲ Just 2, list ⊲[2] }
fmapΠ (+1) r -- {maybe ⊲ Just 3, list ⊲[3] }
The definition of bindΠ is given as follows, where (>>=) is the bind operator of Monad :

bindΠ : ∀(r : 𝑅★→★) (a b :★) (𝜇 :𝑈). (All Monad r)
⇒ Π𝜇 (Lift (𝜆c. c a) r) → Π𝜇 (Lift (𝜆c. a → c b) r) → Π𝜇 (Lift (𝜆c. c b) r)

bindΠ = 𝜆x f . ind (𝜆a.Π𝜇 (Lift (𝜆c. c b) a)) r (𝜆l acc. acc ++{ l ⊲ ((x/l) >>= (f /l)) }) { }

Unlifting row types. We have seen how lift_maybe converts a record of values into a record of

Maybe values. Now, consider a reverse operator that converts a record ofMaybe values back into a

record of concrete values. This is not always possible though, since if a field maps to Nothing, we
simply cannot recover a value of its original type. Therefore, we instead consider a function that

takes a list of records with Maybe values, filters out entries that contain Nothing in one of their

fields, and then returns a list containing only the remaining records with unwrapped values:

unlift_maybe : ∀(r : 𝑅) (𝜇 :𝑈). List (Π𝜇 (Lift Maybe r)) → List (Π𝜇 r)
unlift_maybe = 𝜆x .map (𝜆y . ind (𝜆l acc. acc ++{ l ⊲ fromJust y/l }) { }) $ filter complete x

complete : ∀(r : 𝑅) (𝜇 :𝑈). (Π𝜇 (Lift Maybe r)) → Bool
complete = 𝜆y . ind (𝜆a. Bool) r (𝜆l acc. acc&& isJust (y/l)) True
Here, complete checks if a record contains Nothing in any of its fields. After filtering out these

records, unlift_maybemaps over the list, applying ind to extract the field values from their Just wrap-
per.

However, unlift_maybe requires a record to contain Maybe values in all of its fields. More

commonly, only some fields may have missing data, while others are guaranteed to be present. For

example, we may always expect a pet to have a name, but its weight information could be missing.

Therefore, it can be useful to split rows into two parts: those with Maybe fields and those without.

This way, unlift_maybe can be applied specifically to the fields containing Maybe values.
To this end, our system introduces an additional constraint of the form Split (𝜆a : k . t) r1 r2 r .

Specifically, a Split (𝜆a:k . t) r1 r2 r constraint looks at the types of r’s fields. If a field’s type matches

t after substituting a with some type t’, then the field mapping to t’ is placed in r1. Otherwise the
original field is placed in r2. As an example, we have:

Split Maybe ⟨weight ⊲ Float⟩ ⟨name ⊲ String⟩ ⟨name ⊲ String,weight ⊲Maybe Float⟩
Notice that first row contains ⟨weight ⊲ Float⟩, instead of ⟨weight ⊲Maybe Float⟩. In other words,

Split (𝜆a : k . t) r1 r2 r implies ((Lift (𝜆a : k . t) r1) ⊙ r2 ∼ r), rather than (r1 ⊙ r2 ∼ r).
This allows us to define a generalized version of unlift_maybe:

unlift_maybe’ : ∀(r r1 r2 r’ : 𝑅) (𝜇 :𝑈). (Split Maybe r1 r2 r, r1 ⊙𝑐 r2 ∼ r’)
⇒ List (Π𝜇 r) → List (Π𝜇 r’)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

Extensible Data Types with Ad-Hoc Polymorphism 20:11

The constraint Split Maybe r1 r2 r splits r , according to whether the field’s type matches Maybe,
into r1 and r2. The function then takes a list of the original record type Π𝜇 r , and produces a list of

type Π𝜇 r’. For example:

pets = [{name ⊲ “alice”,weight ⊲ Just 2.4}, {name ⊲ “bob”,weight ⊲Nothing }
, {name ⊲ “carol”,weight ⊲ Just 3.6}]

unlift_maybe’ pets -- [{name ⊲ “alice”,weight ⊲ 2.4}, {name ⊲ “carol”,weight ⊲ 3.6}]

The Split constraint differs from the All constraint in a few key ways. All C r takes a constraint
C and requires all fields in r to satisfy it. In contrast, Split (𝜆a : k . t) r1 r2 r takes a type abstraction,
and splits r based on its type information. In languages with expressive type systems, where type

equivalence can be expressed as constraints, we could potentially express Split (𝜆a : k . t) r1 r2 r
as (Lift (𝜆a : k . t) r1 ⊙𝑐 r2 ∼ r), (All (𝜆c. ∄ t’ . subst a t’ t == c) r2), assuming (subst a t’ t)
substitutes a for t’ in t , and (==) denotes type-level equivalence. Notably, Split also conveys

negative information, since r2 must not match t .
We can define the corresponding split operator, with which we define unlift_maybe’:

splitΠ 𝜙 : ∀(r r1 r2 : 𝑅). Split 𝜙 r1 r2 r ⇒ Π𝑐 r → {match ⊲Π𝑐 (Lift 𝜙 r1), rest ⊲Π𝑐 r2 }
≜ (𝜆r . {match ⊲(r : Π𝑐 (Lift 𝜙 r1)), rest ⊲(r : Π𝑐 r2) })

unlift_maybe’ r = let r’ = splitΠ Maybe r in (unlift_maybe (r’/match)) ++(r’/rest)

3 Declarative Type System
This section presents the type system of the source calculus 𝜆⇒𝜌 , which incorporates row polymor-

phism and type classes. The dynamic semantics will be defined later in §5.

3.1 Syntax
Fig. 1 presents the syntax of 𝜆⇒𝜌 . A program 𝑝𝑔𝑚 consists of a sequence of class and instance
declarations, followed by a term. A type class declaration defines a type class for types of kind 𝜅,

with the overline notation denoting that any number of superclasses𝑇𝐶′
𝑖 are allowed. For simplicity,

we assume each type class has a single method𝑚, though the system could easily be extended.

Instances can be qualified with any number of prerequisite constraints𝜓𝑖 .

Terms𝑀 include term variables 𝑥 , type class methods𝑚, lambdas 𝜆 𝑥. 𝑀 , applications𝑀 𝑁 , let

expressions let𝑥 :𝜎 =𝑀 in𝑁 , expressions with type annotations𝑀 :𝜎 , first-class labels ℓ , singleton

products {𝑀 ⊲𝑁 } and sums [𝑀 ⊲𝑁], unlabel operations𝑀/𝑁 , projection prj𝑀10
, concatenation

𝑀++𝑁 , injection inj𝑀 , elimination𝑀 ▽𝑁 , and ind expressions.

Types are stratified: type schemes 𝜎 include polymorphic types ∀𝑎 :𝜅. 𝜎 and qualified types 𝛾 .

Qualified types 𝛾 include types𝜓⇒𝛾 with a constraint𝜓 , and monotypes 𝜏 .

Monotypes 𝜏 represent types across various kinds. For clarity, we often use specific symbols

to informally refer to types of particular kinds: we write 𝜙 for type-level functions, 𝜌 for rows,𝜓

for constraints, 𝜉 for labels, and 𝜇 for commutativities. Monotypes include type variables 𝑎, type

applications 𝜙 𝜏 , function types 𝜏0 →𝜏1, labels ℓ , singleton label types ⌊𝜉⌋, commutativities 𝑢, and

rows ⟨𝜉𝑖 ⊲ 𝜏𝑖⟩. Records or variants are denoted by Ξ𝜇 𝜌 , using Π or Σ, respectively. The Ξ notation is

associated with commutativity information 𝜇, which can be polymorphic. A concrete commutativity

𝑢 is either 𝔠 for commutative or 𝔫 for non-commutative. The Lift operation applies a type-level

function over rows. For simplicity, we do not include general type-level lambdas, avoiding the

10
The formalism includes explicit projection and injection, following Morris and McKinna [2019].

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

20:12 Matthew Toohey, Yanning Chen, Ara Jamalzadeh, and Ningning Xie

𝑝𝑔𝑚 F class𝑇𝐶′
𝑖
𝑎𝑖 ⇒𝑇𝐶 𝑎 :𝜅where {𝑚 :𝜎}; 𝑝𝑔𝑚 |

instance𝜓𝑖 ⇒𝑇𝐶 𝜏 where {𝑚 =𝑀}; 𝑝𝑔𝑚 | 𝑀
program

𝑀, 𝑁 F 𝑥 | 𝑚 | 𝜆 𝑥 .𝑀 | 𝑀 𝑁 | let𝑥 :𝜎 =𝑀 in𝑁 | 𝑀 :𝜎 | ℓ |
{𝑀 ⊲𝑁 } | [𝑀 ⊲𝑁] | 𝑀/𝑁 | prj𝑀 | 𝑀++𝑁 | inj𝑀 | 𝑀 ▽𝑁 |
ind (𝜆 𝑎 :𝜅. 𝜏) 𝜌 𝑀 𝑁

term

𝜎 F ∀𝑎 :𝜅. 𝜎 | 𝛾 type scheme
𝛾 F 𝜓⇒𝛾 | 𝜏 qualified type

𝜏, 𝜙, 𝜌,𝜓, 𝜉, 𝜇 F 𝑎 | 𝜙 𝜏 | 𝜏0 →𝜏1 | ℓ | ⌊𝜉⌋ | 𝑢 | ⟨𝜉𝑖 ⊲ 𝜏𝑖⟩ | Ξ𝜇 𝜌 |
Lift (𝜆 𝑎 :𝜅. 𝜏) 𝜌 | 𝜌0 <∼𝜇 𝜌1 | 𝜌0 ⊙𝜇 𝜌1 ∼ 𝜌2 | 𝑇𝐶 𝜏 |
All (𝜆 𝑎 :𝜅. 𝜏) 𝜌 | Split (𝜆 𝑎 :𝜅. 𝜏) 𝜌0 𝜌1 𝜌2

monotype

𝑢 F 𝔠 | 𝔫 commutativity
Ξ F Π | Σ prod or sum

Γ F 𝜖 | Γ, 𝑎 :𝜅 | Γ, 𝑥 :𝜎 | Γ,𝜓 type environment
Γ𝐶 F 𝜖 | Γ𝐶 , (𝑇𝐶′

𝑖
𝑎𝑖 ⇒𝑇𝐶 𝑎 :𝜅) ↦→𝑚 :𝜎 class environment

Γ𝐼 F 𝜖 | Γ𝐼 , (∀𝑎𝑖 :𝜅𝑖 .𝜓𝑖 ⇒𝑇𝐶 𝜏) instance environment

𝜅 F ★ | 𝜅0 ↦→𝜅1 | R𝜅 | C | L | U kind
Fig. 1. Syntax

Γ𝐶 ; Γ ⊢𝜎 :𝜅 (Kinding)

label

Γ𝐶 ; Γ ⊢ ℓ : L

floor

Γ𝐶 ; Γ ⊢ 𝜉 : L
Γ𝐶 ; Γ ⊢ ⌊𝜉⌋ :★

comm

Γ𝐶 ; Γ ⊢𝑢 :U

row

Γ𝐶 ; Γ ⊢ 𝜉𝑖 : L ⊢T 𝜉𝑖 Γ𝐶 ; Γ ⊢𝜏𝑖 :𝜅
Γ𝐶 ; Γ ⊢ ⟨𝜉𝑖 ⊲ 𝜏𝑖⟩ :R𝜅

prodOrSum

Γ𝐶 ; Γ ⊢ 𝜇 :U Γ𝐶 ; Γ ⊢ 𝜌 :R★

Γ𝐶 ; Γ ⊢Ξ𝜇 𝜌 :★

lift

Γ𝐶 ; Γ, 𝑎 :𝜅0 ⊢𝜏 :𝜅1 Γ𝐶 ; Γ ⊢ 𝜌 :R𝜅0

Γ𝐶 ; Γ ⊢ Lift (𝜆 𝑎 :𝜅0 . 𝜏) 𝜌 :R𝜅1
contain

Γ𝐶 ; Γ ⊢ 𝜇 :U
Γ𝐶 ; Γ ⊢ 𝜌0 :R𝜅 Γ𝐶 ; Γ ⊢ 𝜌1 :R𝜅

Γ𝐶 ; Γ ⊢ 𝜌0 <∼𝜇 𝜌1 :C

concat

Γ𝐶 ; Γ ⊢ 𝜇 :U Γ𝐶 ; Γ ⊢ 𝜌0 :R𝜅
Γ𝐶 ; Γ ⊢ 𝜌1 :R𝜅 Γ𝐶 ; Γ ⊢ 𝜌2 :R𝜅

Γ𝐶 ; Γ ⊢ 𝜌0 ⊙𝜇 𝜌1 ∼ 𝜌2 :C

tc

(𝑇𝐶′
𝑖
𝑎⇒𝑇𝐶 𝑎 :𝜅) ↦→𝑚 :𝜎 ∈ Γ𝐶

Γ𝐶 ; Γ ⊢𝜏 :𝜅
Γ𝐶 ; Γ ⊢𝑇𝐶 𝜏 :C

all

Γ𝐶 ; Γ, 𝑎 :𝜅 ⊢𝜓 :C Γ𝐶 ; Γ ⊢ 𝜌 :R𝜅

Γ𝐶 ; Γ ⊢All (𝜆 𝑎 :𝜅.𝜓) 𝜌 :C

split

Γ𝐶 ; Γ ⊢ (Lift (𝜆 𝑎 :𝜅. 𝜏) 𝜌0) ⊙𝔠 𝜌1 ∼ 𝜌2 :C
Γ𝐶 ; Γ ⊢ Split (𝜆 𝑎 :𝜅. 𝜏) 𝜌0 𝜌1 𝜌2 :C

Fig. 2. Kinding

need to handle them in arbitrary positions.
11
Monotypes also include several forms of constraints:

containment <∼ and concatenation ⊙ constraints which are also associated with commutativities,

type class constraints 𝑇𝐶 𝜏 , All constraints, and Split constraints.
Moreover, we have three environments: a type environment Γ maps type variables to their kinds

and term variables to their types, as well as keeping track of constraints. A class environment Γ𝐶
stores type class declarations, and an instance environment Γ𝐼 stores type class instance declarations.

Lastly, we employ a kind system to distinguish between types: kinds 𝜅 include★ for the base kind,

𝜅0 ↦→𝜅1 for type-level functions and type constructors, R𝜅 for rows, C for constraints, L for labels,

and U for commutativities. Fig. 2 presents selected kinding rules related to rows and constraints;

most of them are straightforward. Rule row checks the labels and their types. Here, T represents

11
Type inference for type-level lambdas is known to be generally undecidable; we leave type inference for future work. We

also believe solving Split constraints in the presence of type-level lambdas would introduce similar challenges.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

Extensible Data Types with Ad-Hoc Polymorphism 20:13

a row theory [Morris and McKinna 2019] which allows a language to be defined generically with

respect to various aspects of rows. More concretely, we rely on the row theory to specify:

(1) a validity check for labels within a row (e.g. row in Fig. 2);

(2) a predicate which can restrict reordering for commutative rows (e.g. comm in Fig. 4); and

(3) a constraint solver (e.g. qalE in Fig. 3), allowing for varied interpretations of row constraints.

For rule prodOrSum, the row must have kind R★
since its entries describe terms within products

or variants. In contrast, contain and concat allow rows of any kind. Lastly, rule split checks

Split simply by checking a concatenation constraint, as they share the same kinding requirements.

3.2 Typing
Fig. 3 presents the term typing rules. Program typing rules (along with their elaborations) are

omitted; these rules are standard, simply extending the class and instance environments, and can

be found in the appendix. The judgement Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 :𝜎 reads that under contexts Γ𝐼 , Γ𝐶 and Γ,

term𝑀 has type 𝜎 . Readers are advised to disregard any⇝ blue and highlighted parts, as these

are relevant to the elaboration process that will be explained in §5. The first six rules are standard.

Rule method states that a type class method can be invoked whenever the corresponding class

constraint can be solved (§3.3).

Rule qalI adds qualifiers to types by putting the constraint in the environment (with the⇝𝑥

part needed for elaboration) to type-check the term, while qalE eliminates them by invoking

the row theory’s constraint solving relation. Similarly, schemeI generalizes the term’s type, while

schemeE instantiates polymorphic types.

In label, first-class labels are assigned a singleton type of the same label. Rules prod and sum

create singletons of their respective row types, requiring the label term to have a singleton label

type. unlabel applies to both singleton products and sums, when the label in the type of 𝑁 matches

the label in the row of𝑀 ’s type. Rules prj, concat, inj, and elim all require the corresponding row

constraints to hold. Rule sub allows terms to be implicitly cast to a supertype, using the subtyping

judgement. Finally, ind precisely specifies the ind primitive, as described in §2.2.

Subtyping. Fig. 4 presents selected subtyping rules. The subtyping judgement Γ𝐶 ; Γ ⊢𝜎0 <:𝜎1
reads that under the contexts Γ𝐶 and Γ, the type 𝜎0 is a subtype of 𝜎1. For clarity, we also informally

write Γ𝐶 ; Γ;𝜓0 ⊨𝜓1 for subtyping between constraints. The subtyping relation supports a partial

ordering between commutativity annotations, type equivalence between commutative rows, and

type equivalence for Lift types and their applied forms. Relations between rows, however, are

handled by constraint solving, as their interpretation can vary depending on the specific row theory.

Subtyping is reflexive and transitive, and is co-variant over both product and sum constructors.

Thus, rule prodOrSum simply checks the subtyping relation between the components. Rules

prodOrSumRow, contain, and all relate equivalent rows inside constructors. Row equivalence

Γ𝐶 ; Γ ⊢ 𝜌0 ≡𝜇 𝜌1 is reflexive, symmetrical, and transitive. It is parameterized by the commutativity

𝜇, which is passed in from subtyping. Row equivalence relates commutative rows, as in rule

comm (where the row permutation is parameterized by the row theory, and [:𝑛] denotes the natural
numbers up to, but not including 𝑛), as well as lifts of concrete rows regardless of the commutativity,

as in rules liftL and liftR.

Rule decay allows a record or variant with commutativity 𝜇0 to be used as onewith commutativity

𝜇1, provided 𝜇0⩽ 𝜇1. Rule never converts an empty sum, which has no inhabitants, to any other

well-formed type, which is especially handy for writing initial values when using ind with sums.

As previously discussed, commutativity has a partial ordering, denoted as 𝜇0⩽ 𝜇1, which is

reflexive. Non-commutativity 𝔫 is the strongest form, as it retains row order information. This

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

20:14 Matthew Toohey, Yanning Chen, Ara Jamalzadeh, and Ningning Xie

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 :𝜎⇝𝐸 (Typing And Elaboration)

var

𝑥 :𝜎 ∈ Γ
Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑥 :𝜎⇝𝑥

method

(𝑇𝐶′
𝑖
𝑎⇝𝐴′

𝑖
⇒𝑇𝐶 𝑎 :𝜅) ↦→𝑚 :𝜎⇝𝐴 ∈ Γ𝐶 Γ𝐼 ; Γ𝐶 ; Γ ⊨T 𝑇𝐶 𝜏⇝𝐸

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑚 :𝜎 [𝜏/𝑎] ⇝𝜋0 𝐸
lam

Γ𝐼 ; Γ𝐶 ; Γ, 𝑥 :𝜏0 ⊢𝑀 :𝜏1⇝𝐸 Γ𝐶 ; Γ ⊢𝜏0 :★⇝𝐴

Γ𝐼 ; Γ𝐶 ; Γ ⊢ 𝜆 𝑥. 𝑀 :𝜏0 →𝜏1⇝ 𝜆 𝑥 :𝐴. 𝐸

app

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 :𝜏0 →𝜏1⇝ 𝐹 Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑁 :𝜏0⇝𝐸

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 𝑁 :𝜏1⇝ 𝐹 𝐸
let

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 :𝜎0⇝𝐸 Γ𝐶 ; Γ ⊢𝜎0 :★⇝𝐴 Γ𝐼 ; Γ𝐶 ; Γ, 𝑥 :𝜎0 ⊢𝑁 :𝜎1⇝ 𝐹

Γ𝐼 ; Γ𝐶 ; Γ ⊢ let𝑥 :𝜎0 =𝑀 in𝑁 :𝜎1⇝ (𝜆 𝑥 :𝐴. 𝐹) 𝐸

annot

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 :𝜎⇝𝐸

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 :𝜎 :𝜎⇝𝐸

qalI

Γ𝐶 ; Γ ⊢𝜓 :C⇝𝐴

Γ𝐼 ; Γ𝐶 ; Γ,𝜓⇝𝑥 ⊢𝑀 :𝛾⇝𝐸

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 :𝜓⇒𝛾⇝ 𝜆 𝑥 :𝐴. 𝐸

qalE

Γ𝐼 ; Γ𝐶 ; Γ ⊨T 𝜓⇝𝐸

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 :𝜓⇒𝛾⇝ 𝐹

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 :𝛾⇝ 𝐹 𝐸

schemeI

Γ𝐼 ; Γ𝐶 ; Γ, 𝑎 :𝜅 ⊢𝑀 :𝜎⇝𝐸

⊢𝜅⇝𝐾

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 :∀𝑎 :𝜅. 𝜎⇝Λ𝑎 :𝐾. 𝐸
schemeE

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 :∀𝑎 :𝜅. 𝜎⇝𝐸

Γ𝐶 ; Γ ⊢𝜏 :𝜅⇝𝐴

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 :𝜎 [𝜏/𝑎] ⇝𝐸 [𝐴]

label

Γ𝐼 ; Γ𝐶 ; Γ ⊢ ℓ : ⌊ℓ⌋⇝ ()

prod

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 : ⌊𝜉⌋ Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑁 :𝜏⇝𝐸

Γ𝐼 ; Γ𝐶 ; Γ ⊢ {𝑀 ⊲𝑁 } :Π𝔫 ⟨𝜉 ⊲ 𝜏⟩⇝ (𝐸)

sum

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 : ⌊𝜉⌋ Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑁 :𝜏⇝𝐸

Γ𝐼 ; Γ𝐶 ; Γ ⊢ [𝑀 ⊲𝑁] : Σ𝔫 ⟨𝜉 ⊲ 𝜏⟩⇝ 𝜄0 𝐸

unlabel

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 :Ξ𝔠 ⟨𝜉 ⊲ 𝜏⟩⇝𝐸 Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑁 : ⌊𝜉⌋

Γ𝐶 ; Γ ⊢𝜏 :★⇝𝐴 𝐹 =

{
𝜋0 𝐸 Ξ = Π

case𝐸 {𝜆 𝑥 :𝐴. 𝑥} Ξ = Σ

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀/𝑁 :𝜏⇝ 𝐹
prj

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 :Π𝜇 𝜌0⇝𝐸

Γ𝐼 ; Γ𝐶 ; Γ ⊨T 𝜌1 <∼𝜇 𝜌0⇝ 𝐹

Γ𝐼 ; Γ𝐶 ; Γ ⊢ prj𝑀 :Π𝜇 𝜌1⇝ (𝜋0 𝐹) [𝜆 𝑎 :★. 𝑎] 𝐸

concat

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 :Π𝜇 𝜌0⇝𝐸0 Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑁 :Π𝜇 𝜌1⇝𝐸1
Γ𝐼 ; Γ𝐶 ; Γ ⊨T 𝜌0 ⊙𝜇 𝜌1 ∼ 𝜌2⇝ 𝐹

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀++𝑁 :Π𝜇 𝜌2⇝ ((𝜋0 𝐹) [𝜆 𝑎 :★. 𝑎] 𝐸0) 𝐸1
inj

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 : Σ𝜇 𝜌0⇝𝐸 Γ𝐼 ; Γ𝐶 ; Γ ⊨T 𝜌0 <∼𝜇 𝜌1⇝ 𝐹

Γ𝐼 ; Γ𝐶 ; Γ ⊢ inj𝑀 : Σ𝜇 𝜌1⇝ (𝜋1 𝐹) [𝜆 𝑎 :★. 𝑎] 𝐸
elim

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 : (Σ𝜇 𝜌0) →𝜏⇝𝐸0 Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑁 : (Σ𝜇 𝜌1) →𝜏⇝𝐸1

Γ𝐼 ; Γ𝐶 ; Γ ⊨T 𝜌0 ⊙𝜇 𝜌1 ∼ 𝜌2⇝ 𝐹 Γ𝐶 ; Γ ⊢𝜏 :★⇝𝐴

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 ▽𝑁 : (Σ𝜇 𝜌2) →𝜏⇝ ((𝜋1 𝐹) [𝜆 𝑎 :★. 𝑎] [𝐴] 𝐸0) 𝐸1

sub

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 :𝜎0⇝𝐸

Γ𝐶 ; Γ ⊢𝜎0 <:𝜎1⇝ 𝐹

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 :𝜎1⇝ 𝐹 𝐸
ind

Γ𝐶 ; Γ ⊢ 𝜌 :R𝜅 Γ𝐶 ; Γ, 𝑎 :R𝜅 ⊢𝜏 :★⇝𝐴

Γ𝐼 ; Γ𝐶 ; Γ, 𝑎𝑙 : L, 𝑎𝑡 :𝜅, 𝑎𝑝 𝑎𝑖 𝑎𝑛 :R𝜅 ⊢𝑀 :𝑎𝑝 ⊙𝔫 ⟨𝑎𝑙 ⊲𝑎𝑡 ⟩ ∼𝑎𝑖 , 𝑎𝑖 ⊙𝔫 𝑎𝑛 ∼ 𝜌⇒ ⌊𝑎𝑙 ⌋ →𝜏
[
𝑎𝑝/𝑎

]
→𝜏 [𝑎𝑖/𝑎] ⇝𝐸0

Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑁 :𝜏 [⟨⟩/𝑎] ⇝𝐸1

⊢𝜅⇝𝐾 Γ𝐼 ; Γ𝐶 ; Γ ⊨T Ind 𝜌⇝ 𝐹 𝐸 = (𝐹 [𝜆 𝑎 : L𝐾 . 𝐴] (Λ𝑎𝑙 :★, 𝑎𝑡 :𝐾, 𝑎𝑝 𝑎𝑖 𝑎𝑛 : L𝐾 . 𝐸0)) 𝐸1
Γ𝐼 ; Γ𝐶 ; Γ ⊢ ind (𝜆 𝑎 :R𝜅 . 𝜏) 𝜌 𝑀 𝑁 :𝜏 [𝜌/𝑎] ⇝𝐸

Fig. 3. Term typing (with elaboration detailed in §5)

information can be discarded, allowing it to “decay” into any other commutativity type. Conversely,

commutativity 𝔠 is the weakest form, as it carries no additional information. This ordering is partial

because there is no relationship between distinct polymorphic commutativity type variables. Recall

that the typing rules prod, sum, and unlabel (Fig. 3) use concrete commutativities. This partial

ordering allows us to apply those rules to values with other forms of commutativity without any

loss of expressiveness.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

Extensible Data Types with Ad-Hoc Polymorphism 20:15

Γ𝐶 ; Γ ⊢𝜎0 <:𝜎1 ≜ Γ𝐶 ; Γ;𝜓0 ⊨𝜓1 (Subtyping)

prodOrSum

Γ𝐶 ; Γ ⊢𝜏𝑖 <:𝜏 ′𝑖
Γ𝐶 ; Γ ⊢Ξ𝜇 ⟨𝜉𝑖 ⊲ 𝜏𝑖⟩ :★

Γ𝐶 ; Γ ⊢Ξ𝜇 ⟨𝜉𝑖 ⊲ 𝜏𝑖⟩ <:Ξ𝜇 ⟨𝜉𝑖 ⊲ 𝜏 ′𝑖 ⟩

prodOrSumRow

Γ𝐶 ; Γ ⊢ 𝜌0 ≡𝜇 𝜌1
Γ𝐶 ; Γ ⊢Π𝜇 𝜌0 :★

Γ𝐶 ; Γ ⊢Π𝜇 𝜌0 <:Ξ𝜇 𝜌1

decay

Γ𝐶 ; Γ ⊢Ξ𝜇0 𝜌 :★
Γ𝐶 ; Γ ⊢ 𝜇1 :U 𝜇0⩽ 𝜇1

Γ𝐶 ; Γ ⊢Ξ𝜇0 𝜌 <:Ξ𝜇1 𝜌

never

Γ𝐶 ; Γ ⊢𝜎 :★
Γ𝐶 ; Γ ⊢ Σ𝔠 ⟨⟩ <:𝜎

contain

Γ𝐶 ; Γ ⊢ 𝜌0 ≡𝜇 𝜌2 Γ𝐶 ; Γ ⊢ 𝜌1 ≡𝜇 𝜌3
Γ𝐶 ; Γ ⊢ 𝜌0 <∼𝜇 𝜌1 :C

Γ𝐶 ; Γ; 𝜌0 <∼𝜇 𝜌1 ⊨ 𝜌2 <∼𝜇 𝜌3

all

Γ𝐶 ; Γ ⊢ 𝜌0 ≡𝔠 𝜌1
Γ𝐶 ; Γ ⊢All (𝜆 𝑎 :𝜅.𝜓) 𝜌0 :C

Γ𝐶 ; Γ;All (𝜆 𝑎 :𝜅.𝜓) 𝜌0 ⊨All (𝜆 𝑎 :𝜅.𝜓) 𝜌1

Γ𝐶 ; Γ ⊢ 𝜌0 ≡𝜇 𝜌1 (Row Equivalence)

refl

Γ𝐶 ; Γ ⊢ 𝜌 :R𝜅

Γ𝐶 ; Γ ⊢ 𝜌 ≡𝜇 𝜌

trans

Γ𝐶 ; Γ ⊢ 𝜌0 :R𝜅
Γ𝐶 ; Γ ⊢ 𝜌0 ≡𝜇 𝜌1 Γ𝐶 ; Γ ⊢ 𝜌1 ≡𝜇 𝜌2

Γ𝐶 ; Γ ⊢ 𝜌0 ≡𝜇 𝜌2

comm

⊢T 𝑝 permutes [:𝑛] for 𝜉
Γ𝐶 ; Γ ⊢ ⟨𝜉𝑖 ⊲ 𝜏𝑖

𝑖∈[:𝑛]⟩ :R𝜅

Γ𝐶 ; Γ ⊢ ⟨𝜉𝑖 ⊲ 𝜏𝑖
𝑖∈[:𝑛]⟩ ≡𝔠 ⟨𝜉𝑖 ⊲ 𝜏𝑖

𝑖∈𝑝⟩
liftL

Γ𝐶 ; Γ ⊢ Lift (𝜆 𝑎 :𝜅0 . 𝜏 ′) ⟨𝜉𝑖 ⊲ 𝜏𝑖⟩ :R𝜅1

Γ𝐶 ; Γ ⊢ Lift (𝜆 𝑎 :𝜅0 . 𝜏 ′) ⟨𝜉𝑖 ⊲ 𝜏𝑖⟩ ≡𝜇 ⟨𝜉𝑖 ⊲ 𝜏 ′ [𝜏𝑖/𝑎]⟩

liftR

Γ𝐶 ; Γ ⊢ Lift (𝜆 𝑎 :𝜅0 . 𝜏 ′) ⟨𝜉𝑖 ⊲ 𝜏𝑖⟩ :R𝜅1

Γ𝐶 ; Γ ⊢ ⟨𝜉𝑖 ⊲ 𝜏 ′ [𝜏𝑖/𝑎]⟩ ≡𝜇 Lift (𝜆 𝑎 :𝜅0 . 𝜏 ′) ⟨𝜉𝑖 ⊲ 𝜏𝑖⟩

𝜇0⩽ 𝜇1 (Commutativity Partial Ordering)

𝜇⩽ 𝜇 𝔫⩽ 𝜇 𝜇⩽ 𝔠

Fig. 4. Subtyping

3.3 Constraint Solving
Up to this point, we have left the row theory abstract (§3.1). To illustrate constraint solving (and

subsequent elaboration in §5.2), we provide an example interpretation Ts of simple rows, similar to

those from Morris and McKinna [2019]. For this row theory, the label check in the row kinding

rule is instantiated as a uniqueness check, and row permutations in the comm row equivalence rule

are unrestricted.
12
Fig. 5 presents selected rules for the constraint solving relation of Ts. The first

rule local simply solves constraints by using those already available in the context.

Row constraints. The next few rules are for rows. Rule containTrans states that row con-

tainment is transitive. Rule containDecay uses the commutativity partial ordering to solve row

containment constraints, deriving weaker commutativities from stronger ones.

Rule containConcat permits the combination of multiple contained (possibly non-adjacent)

rows into a larger containment constraint. Rule concatConcrete is the only rule for solving

concrete, non-commutative rows constraints; the constraint well-kindedness ensures the uniqueness

of labels. The non-commutativity requires the combined row to be made up of all entries of the first

row in order, followed by all entries of the second, meaning no “interleaving” is allowed. However,

elements can be interleaved in containment constraints via containConcat.

Rule concatSwap states that commutative row combination is symmetric. Rule concatDecay,

similarly to rule containDecay, allows containment constraints with stronger commutativity to

prove those with weaker commutativity. Lastly, containment can also be derived from concatenation

using rules concatContainL and concatContainR.

12
It is possible to instantiate T with other row theories, such as scoped rows [Berthomieu and De Sagazan 1995; Leijen 2005].

In that case, rule row allows duplicate labels, and comm permits permutations between non-duplicate labels.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

20:16 Matthew Toohey, Yanning Chen, Ara Jamalzadeh, and Ningning Xie

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜓 (Constraint Solving)

Local Row

local

𝜓 ∈ Γ
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜓

containTrans

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 <∼𝜇 𝜌1 Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌1 <∼𝜇 𝜌2
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 <∼𝜇 𝜌2

containDecay

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 <∼𝜇0 𝜌1
𝜇0⩽ 𝜇1 Γ𝐶 ; Γ ⊢ 𝜇1 :U
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 <∼𝜇1 𝜌1

containConcat

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 ⊙𝜇 𝜌1 ∼ 𝜌2 Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌3 ⊙𝜇 𝜌4 ∼ 𝜌5 Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 <∼𝜇 𝜌3 Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌1 <∼𝜇 𝜌4
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌2 <∼𝜇 𝜌5

concatConcrete

Γ𝐶 ; Γ ⊢ ⟨𝜉𝑖 ⊲ 𝜏𝑖
𝑖∈[:𝑚]

, 𝜉 ′
𝑗
⊲ 𝜏 ′

𝑗

𝑗∈[:𝑛]⟩ :R𝜅

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts ⟨𝜉𝑖 ⊲ 𝜏𝑖
𝑖∈[:𝑚]⟩ ⊙𝔫 ⟨𝜉 ′𝑗 ⊲ 𝜏 ′𝑗

𝑗∈[:𝑛]⟩ ∼ ⟨𝜉𝑖 ⊲ 𝜏𝑖
𝑖∈[:𝑚]

, 𝜉 ′
𝑗
⊲ 𝜏 ′

𝑗

𝑗∈[:𝑛]⟩

concatSwap

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 ⊙𝔠 𝜌1 ∼ 𝜌2
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌1 ⊙𝔠 𝜌0 ∼ 𝜌2

concatDecay

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 ⊙𝜇0 𝜌1 ∼ 𝜌2
𝜇0⩽ 𝜇1 Γ𝐶 ; Γ ⊢ 𝜇1 :U
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 ⊙𝜇1 𝜌1 ∼ 𝜌2

concatContainL

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 ⊙𝜇 𝜌1 ∼ 𝜌2
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 <∼𝜇 𝜌2

concatContainR

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 ⊙𝜇 𝜌1 ∼ 𝜌2
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌1 <∼𝜇 𝜌2

Lift
liftContain

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 <∼𝜇 𝜌1 Γ𝐶 ; Γ ⊢ 𝜌0 :R𝜅0 Γ𝐶 ; Γ, 𝑎 :𝜅0 ⊢𝜏 :𝜅1
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts (Lift (𝜆 𝑎 :𝜅0 . 𝜏) 𝜌0) <∼𝜇 (Lift (𝜆 𝑎 :𝜅0 . 𝜏) 𝜌1)

liftConcat

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 ⊙𝜇 𝜌1 ∼ 𝜌2 Γ𝐶 ; Γ ⊢ 𝜌0 :R𝜅0 Γ𝐶 ; Γ, 𝑎 :𝜅0 ⊢𝜏 :𝜅1
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts (Lift (𝜆 𝑎 :𝜅0 . 𝜏) 𝜌0) ⊙𝜇 (Lift (𝜆 𝑎 :𝜅0 . 𝜏) 𝜌1) ∼ (Lift (𝜆 𝑎 :𝜅0 . 𝜏) 𝜌2)

Type classes
TCInst

(∀𝑎𝑘 :𝜅𝑘 .𝜓 𝑗 ⇒𝑇𝐶 𝜏) ∈ Γ𝐼
Γ𝐶 ; Γ ⊢𝜏 ′𝑘 :𝜅𝑘 Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜓 𝑗 [𝜏 ′𝑘/𝑎𝑘]

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝑇𝐶 𝜏 [𝜏 ′𝑘/𝑎𝑘]

TCSuper

(𝑇𝐶′
𝑗
𝑎
𝑗∈[:𝑛] ⇒𝑇𝐶 𝑎 :𝜅) ↦→𝑚 :𝜎 ∈ Γ𝐶

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝑇𝐶 𝜏 𝑖 ∈ [:𝑛]
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝑇𝐶

′
𝑖 𝜏

All
allEmpty

Γ𝐶 ; Γ, 𝑎 :𝜅 ⊢𝜓 :C

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts All (𝜆 𝑎 :𝜅.𝜓) ⟨⟩

allSingletonIntro

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜓 [𝜏/𝑎] Γ𝐶 ; Γ, 𝑎 :𝜅 ⊢𝜓 :C Γ𝐶 ; Γ ⊢ 𝜉 : L Γ𝐶 ; Γ ⊢𝜏 :𝜅
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts All (𝜆 𝑎 :𝜅.𝜓) ⟨𝜉 ⊲ 𝜏⟩

allSingletonElim

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts All (𝜆 𝑎 :𝜅.𝜓) ⟨𝜉 ⊲ 𝜏⟩
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜓 [𝜏/𝑎]

allContain

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 <∼𝔠
𝜌1 Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts All (𝜆 𝑎 :𝜅.𝜓) 𝜌1

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts All (𝜆 𝑎 :𝜅.𝜓) 𝜌0
allConcat

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 ⊙𝔠 𝜌1 ∼ 𝜌2 Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts All (𝜆 𝑎 :𝜅.𝜓) 𝜌0 Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts All (𝜆 𝑎 :𝜅.𝜓) 𝜌1
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts All (𝜆 𝑎 :𝜅.𝜓) 𝜌2

Split
splitEmpty

Γ𝐶 ; Γ, 𝑎 :𝜅 ⊢𝜏 :★
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts Split (𝜆 𝑎 :𝜅. 𝜏) ⟨⟩ ⟨⟩ ⟨⟩

splitSingletonMatch

Γ𝐶 ; Γ, 𝑎 :𝜅 ⊢𝜏0 :★ Γ𝐶 ; Γ ⊢𝜏1 :𝜅 Γ𝐶 ; Γ ⊢ 𝜉 : L
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts Split (𝜆 𝑎 :𝜅. 𝜏0) ⟨𝜉 ⊲ 𝜏1⟩ ⟨⟩ ⟨𝜉 ⊲ 𝜏0 [𝜏1/𝑎] ⟩

splitSingletonRest

∄𝜏2, Γ𝐶 ; Γ ⊢𝜏1 <:𝜏0 [𝜏2/𝑎]
Γ𝐶 ; Γ, 𝑎 :𝜅 ⊢𝜏0 :★ Γ𝐶 ; Γ ⊢𝜏1 :★ Γ𝐶 ; Γ ⊢ 𝜉 : L
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts Split (𝜆 𝑎 :𝜅. 𝜏0) ⟨⟩ ⟨𝜉 ⊲ 𝜏1⟩ ⟨𝜉 ⊲ 𝜏1⟩

splitConcat

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts Split (𝜆 𝑎 :𝜅. 𝜏) 𝜌0 𝜌1 𝜌2
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts (Lift (𝜆 𝑎 :𝜅. 𝜏) 𝜌0) ⊙𝔠 𝜌1 ∼ 𝜌2

Fig. 5. Constraint solving

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

Extensible Data Types with Ad-Hoc Polymorphism 20:17

𝐸, 𝐹 F 𝑥 | 𝜆 𝑥 :𝐴. 𝐸 | 𝐸 𝐹 | Λ𝑎 :𝐾. 𝐸 | 𝐸 [𝐴] | (𝐸𝑖) | 𝜋𝑛 𝐸 | 𝜄𝑛 𝐸 | case𝐸 {𝐹𝑖 } term
𝑉 F 𝜆 𝑥 :𝐴. 𝐸 | Λ𝑎 :𝐾. 𝐸 | (𝑉𝑖) | 𝜄𝑛𝑉 value

𝐴, 𝐵,𝐶 F 𝑎 | 𝜆 𝑎 :𝐾.𝐴 | 𝐴𝐵 | ∀𝑎 :𝐾.𝐴 | 𝐴→𝐵 | {𝐴𝑖 } | 𝐴 ⟦𝐵⟧ | ⊗𝐴 | ⊕𝐴 type
𝐾 F ★ | 𝐾1 ↦→𝐾2 | L𝐾 kind
Δ F 𝜖 | Δ, 𝑎 :𝐾 | Δ, 𝑥 :𝐴 environment

Fig. 6. F⊗⊕𝜔 syntax

Rules liftContain and liftConcat solve containment and concatenation constraints for lifted

rows by solving their unlifted forms. This also highlights the utility of allowing row constraints

over rows of arbitrary kinds.

Type classes, All, and Split. There are two rules for type class constraints. Rule TCInst finds an

instance in the context, instantiates its type variables, and solves the prerequisites. Rule TCSuper

solves a superclass when a subclass constraint can be solved.

We have five rules for the All constraint. Rule allEmpty states that All is always satisfied for

empty rows. Rules allSingletonIntro and allSingletonElim convert between All applied to
singleton rows and the corresponding constraint on the type itself. allSingletonElim is particularly

useful within the step function of ind expressions. Rule allContain solves All over smaller rows

using All over larger rows. Finally, rule allConcat solves All constraints over larger rows using
those over smaller rows. This rule is often used at the top level when polymorphic functions are

instantiated and we need to solve constraints for concrete rows.

The remaining rules are for Split. Rule splitEmpty applies when the row being split is empty.

Rules splitSingletonMatch and splitSingletonRest handle cases where an entry either matches

or does not match the type lambda, respectively. While rule splitSingletonMatch is straight-

forward, rule splitSingletonRest incorporates subtyping to ensure deterministic Split solving:
splitSingletonRest only applies when a type fails to match the type lambda, even through sub-

typing. Such a subtyping rule is not needed for splitSingletonMatch because such a check can be

handled by the sub typing rule if necessary to solve the constraint. Larger split constraints are solved

by combining smaller ones, with the corresponding rule provided in the appendix for space reasons.

Finally, rule splitConcat states that Split implies the corresponding concatenation constraint.

Lastly, we remark that while the system incorporates numerous rules, the complexity is a

worthwhile tradeoff for the simplified type signatures it enables: many rules allows for the derivation

of weaker constraints from stronger ones, meaning programmers can specify only themost powerful

constraints in their type signatures, leading to significantly more readable types.

4 Target Calculus
This section presents F

⊗⊕
𝜔 , our target calculus. We present its semantics (§4.1), and prove its type

soundness (§4.2). F
⊗⊕
𝜔 builds upon the F

⊗⊕
calculus [Morris and McKinna 2019], but extends it in

several significant aspects. First, while F
⊗⊕

is based on System F, F
⊗⊕
𝜔 is built on System F𝜔 by

incorporating type lambdas, type applications, and higher kinds. Second, we introduce first-class

type-level lists. This allows product and sum types to be constructed with type-level lists instead of

embedded entries or variants. Unlike rows, type lists are considerably simpler: they lack labels,

so there are no concerns about uniqueness, and they do not support containment, concatenation

constraints, or commutativity. Finally, we introduce type-level mappings, which are similar to Lift
in the source, and apply a type lambda over type-level lists.

Syntax. The syntax of F
⊗⊕
𝜔 is presented in Fig. 6. Expressions 𝐸 include variables 𝑥 , lambdas

𝜆 𝑥 :𝐴. 𝐸, applications 𝐸 𝐹 , type abstractionsΛ𝑎 :𝐾. 𝐸, type applications 𝐸 [𝐴], products (𝐸𝑖) written

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

20:18 Matthew Toohey, Yanning Chen, Ara Jamalzadeh, and Ningning Xie

Δ ⊢𝐴 :𝐾 (Kinding)
list

Δ ⊢𝐴𝑖 :𝐾
Δ ⊢ {𝐴𝑖 } : L𝐾

listApp

Δ ⊢𝐴 :𝐾1 ↦→𝐾2 Δ ⊢𝐵 : L𝐾1

Δ ⊢𝐴 ⟦𝐵⟧ : L𝐾2

prod

Δ ⊢𝐴 : L★

Δ ⊢ ⊗𝐴 :★

sum

Δ ⊢𝐴 : L★

Δ ⊢ ⊕𝐴 :★

Δ ⊢𝐸 :𝐴 (Typing)

prodIntro

⊢Δ Δ ⊢𝐸𝑖 :𝐴𝑖
Δ ⊢ (𝐸𝑖) : ⊗ {𝐴𝑖 }

prodElim

Δ ⊢𝐸 : ⊗ {𝐴𝑖
𝑖∈[:𝑛] }

𝑗 ∈ [:𝑛]
Δ ⊢𝜋 𝑗 𝐸 :𝐴 𝑗

sumIntro

𝑗 ∈ [:𝑛] Δ ⊢𝐸 :𝐴 𝑗
Δ ⊢𝐴𝑖 :★

𝑖∈[:𝑛]

Δ ⊢ 𝜄 𝑗 𝐸 : ⊕ {𝐴𝑖
𝑖∈[:𝑛] }

sumElim

Δ ⊢𝐸 : ⊕ {𝐴𝑖 }
Δ ⊢ 𝐹𝑖 :𝐴𝑖 →𝐵 Δ ⊢𝐵 :★

Δ ⊢ case𝐸 {𝐹𝑖 } :𝐵

Δ ⊢𝐴≡𝐵 (Type Equivalence)

refl

Δ ⊢𝐴≡𝐴

symm

Δ ⊢𝐴≡𝐵
Δ ⊢𝐵 ≡𝐴

trans

Δ ⊢𝐴≡𝐵 Δ ⊢𝐵 ≡𝐶
Δ ⊢𝐴≡𝐶

listAppList

Δ ⊢𝐴 :𝐾1 ↦→𝐾2

Δ ⊢𝐴 ⟦{𝐵𝑖 }⟧≡ {𝐴𝐵𝑖 }
listAppId

Δ ⊢𝐴 : L𝐾

Δ ⊢ (𝜆 𝑎 :𝐾. 𝑎) ⟦𝐴⟧≡𝐴

listAppComp

Δ ⊢𝐴1 :𝐾1 ↦→𝐾2

Δ ⊢𝐴0 ⟦𝐴1 ⟦𝐵⟧⟧≡ (𝜆 𝑎 :𝐾1 . 𝐴0 (𝐴1 𝑎)) ⟦𝐵⟧

listApp

Δ ⊢𝐴1 ≡𝐴2 Δ ⊢𝐵1 ≡𝐵2
Δ ⊢𝐴1 ⟦𝐵1⟧≡𝐴2 ⟦𝐵2⟧

𝐸 −→ 𝐹 (Operational Semantics)

prodIntro

𝐸 −→𝐸′

(𝑉𝑖 , 𝐸, 𝐹 𝑗) −→ (𝑉𝑖 , 𝐸′, 𝐹 𝑗)

prodElim

𝐸 −→𝐸′

𝜋𝑖 𝐸 −→𝜋𝑖 𝐸
′

prodElimIntro

𝑗 ∈ [:𝑛]

𝜋 𝑗 (𝑉𝑖
𝑖∈[:𝑛]) −→𝑉𝑗

sumIntro

𝐸 −→𝐸′

𝜄𝑖 𝐸 −→ 𝜄𝑖 𝐸
′

sumElimL

𝐸 −→𝐸′

case𝐸 {𝐹𝑖 } −→ case𝐸′ {𝐹𝑖 }

sumElimR

𝐸 −→𝐸′

case𝑉 {𝑉 ′
𝑖
, 𝐸, 𝐹 𝑗 } −→ case𝑉 {𝑉 ′

𝑖
, 𝐸′, 𝐹 𝑗 }

sumElimIntro

𝑗 ∈ [:𝑛]

case 𝜄 𝑗 𝑉 {𝑉 ′
𝑖

𝑖∈[:𝑛] } −→𝑉 ′
𝑗 𝑉

Fig. 7. F⊗⊕𝜔 semantics

with the tuple syntax, product projection 𝜋𝑛 𝐸, sum introduction 𝜄𝑛 𝐸, and elimination case𝐸 {𝐹𝑖 }.
Values 𝑉 are a subset of expressions.

Types𝐴 include variables𝑎, type lambdas 𝜆 𝑎 :𝐾.𝐴, applications𝐴𝐵, polymorphic types∀𝑎 :𝐾.𝐴,
function types 𝐴→𝐵, type-level lists {𝐴𝑖 } and mappings 𝐴 ⟦𝐵⟧, product types ⊗𝐴, and sum types

⊕𝐴. Kinds 𝐾 include the base kind ★, 𝐾1 ↦→𝐾2 for mappings, and L𝐾 for type-level lists of kind 𝐾 .

A typing context Δ maps type variables to their kinds, and term variables to their types.

4.1 Typing and Operational Semantics
Fig. 7 presents selected rules for F

⊗⊕
𝜔 , focusing on type-level lists, products, and sums; the complete

rules can be found in the appendix. For kinding Δ ⊢𝐴 :𝐾 , rule list requires all entries in a list to be

of kind 𝐾 , and returns kind L𝐾 . In rule listApp, 𝐴 is a mapping from 𝐾1 ↦→𝐾2, which takes 𝐵 of

L𝐾1
and returns L𝐾2

. Both rules prod and sum require 𝐴 to be of kind L★.
For typing Δ ⊢𝐸 :𝐴, most rules are self-explanatory. The judgement ensures that Δ is well-formed

(written ⊢Δ), and the output type 𝐴 has kind ★. In rule prodIntro, the first hypothesis ensures the

context is well-formed, even if the product is empty. Similarly, in rule sumIntro, the last hypothesis

ensures that the other cases of the sum being created have the required kind. The last hypothesis

for rule sumElim similarly ensures the output is well-kinded, even when 𝐸 is the empty sum.

The judgement Δ ⊢𝐴≡𝐵 defines type equivalence, which is reflexive, symmetrical, and transitive.

Rule listAppList gives mapping its intended semantics by applying the function to each element

within a concrete list. Rules listAppId and listAppComp correspond to the identity and composition

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

Extensible Data Types with Ad-Hoc Polymorphism 20:19

laws for mappings. These two rules are particularly useful when the list is e.g. a type variable and

thus rule listAppList does not apply. We will revisit these rules when discussing elaboration (§5).

The operational semantics 𝐸 −→𝐸′ follow a call-by-value evaluation strategy. Rule prodIntro

evaluates product components left-to-right until all are values. Rules sumElimL and sumElimR

evaluate the scrutinee, then the handlers in a similar way. The computational rules prodElimIntro

and sumElimIntro perform projection and case matching on values. All type-level constructs,

including lists and mappings, are purely static and do not appear in the operational semantics.

4.2 Type Soundness
We demonstrate that F

⊗⊕
𝜔 enjoys syntactic type soundness. The proofs are largely based on those

for System F𝜔 [Pierce 2002], with the exception of the typing inversion and value cannonical form

lemmas, which are significantly more complex than in standard System F𝜔 . These lemmas rely on

the property that it is impossible to establish equivalence between unrelated types. This is normally

established by defining a reduction relation for types, proving that the equivalence closure of this

relation corresponds to type equivalence, then proving confluence for the reduction relation.

Typically, a single-step parallel reduction relation is used, with confluence following from the

diamond property, but this turns out to be highly non-trivial in F
⊗⊕
𝜔 . As an example, consider parallel

reduction on 𝐴 ⟦(𝜆 𝑎 :★. 𝑎) ⟦{𝐵}⟧⟧. This type reduces to 𝐴 ⟦{(𝜆 𝑎 :★. 𝑎) 𝐵}⟧ via listAppList. Al-

ternatively, it reduces to (𝜆 𝑎 :★. 𝐴 ((𝜆 𝑎 :★. 𝑎) 𝑎)) ⟦{𝐵}⟧ via listAppComp. The diamond property

claims that both reduction paths converge in one step, but this is not possible because the first

type reduces to {𝐴𝐵} (listAppList, 𝛽) or 𝐴 ⟦{𝐵}⟧ (listApp, 𝛽), while the second type reduces to

{(𝜆 𝑎 :★. 𝐴 𝑎) 𝐵} (listAppList, 𝛽) or (𝜆 𝑎 :★. 𝐴 𝑎) ⟦{𝐵}⟧ (listApp, 𝛽).

Therefore, instead of using the parallel reduction approach, we define non-deterministic small-

step reduction semantics for types (provided in the appendix).We then applyNewman’s lemma [New-

man 1942] to conclude confluence from local confluence (Thm. 4.1) and strong normalization

(Thm. 4.2). For more detailed explanations of our proofs, we refer the reader to §6, the appendix,

and our artifact.

We first establish local confluence by induction:

Theorem 4.1 (Local Confluence). If Δ ⊢𝐴−→𝐵0, Δ ⊢𝐴−→𝐵1, Δ ⊢𝐴 :𝐾 , and ⊢Δ, then there exists
𝐶 such that Δ ⊢𝐵0 −→∗𝐶 and Δ ⊢𝐵1 −→∗𝐶 .

We then apply an argument based on logical relations [Skorstengaard 2019] to prove strong

normalization. The logical relation for closed types is defined as follows:

SN★(𝐴) = 𝜖 ⊢𝐴 :★∧ SN(𝐴)
SN𝐾1 ↦→𝐾2

(𝐴) = 𝜖 ⊢𝐴 :𝐾1 ↦→𝐾2 ∧∀𝐵, SN𝐾1
(𝐵) ⇒ SN𝐾2

(𝐴𝐵)
SNL𝐾 (𝐴) = 𝜖 ⊢𝐴 : L𝐾 ∧ SNL

SN𝐾 (𝐴) ∧∀𝐴′ 𝐵′, 𝜖 ⊢𝐴−→∗𝐴′ ⟦𝐵′⟧⇒∃𝐶, SN𝐾 (𝐴′𝐶)

The first two cases are standard, as typically seen in logical relations for the lambda calculus [Girard

et al. 1989, Chapter 6]. The SN predicate (which appears in the ★ case) is strong normalization;

this means that there is no infinite reduction sequence for the type. The last case was the most

challenging to define, due to complicated interactions with the listAppComp rule. Specifically, when

this rule is applied, it is often difficult to preserve the required induction hypotheses since various

useful properties (most importantly SN𝐾) cannot be inverted. The SNL
𝑃
relation, paramterized by a

property 𝑃 , states that all reduction paths of the type terminate, or encounter a concrete list whose

entries satisfy 𝑃 :

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

20:20 Matthew Toohey, Yanning Chen, Ara Jamalzadeh, and Ningning Xie

refl

𝑃 (𝐴𝑖)
SNL

𝑃 ({𝐴𝑖 })

step

∀𝐵, 𝜖 ⊢𝐴−→𝐵⇒ SNL
𝑃 (𝐵) ∀𝐵𝑖 , 𝐴≠ {𝐵𝑖 }

SNL
𝑃 (𝐴)

We establish that the logical relation implies strong normalization by induction on kinds:

Theorem 4.2 (Strong Normalization). If SN𝐾 (𝐴) then SN(𝐴).

We prove that well-kinded types are in the logical relation. We lift the logical relations to open

terms, with 𝛿 being the standard substitution of contexts. The judgment 𝛿 ⊨Δmeans that 𝛿 provides

a substitution for each type variable entry in the environment, and each substitution type satisfies

the same SN𝐾 predicate:

Theorem 4.3 (Fundamental Property). If 𝛿 ⊨Δ and Δ ⊢𝐴 :𝐾 then SN𝐾 (𝛿 𝐴).

Combining Thm. 4.2 and Thm. 4.3 establishes strong normalization for all well-kinded types, which

in turn allows us to prove confluence.

With all these, we prove type soundness of F
⊗⊕
𝜔 :

Theorem 4.4 (Progress). If 𝜖 ⊢𝐸 :𝐴, then either 𝐸 is a value, or there exists 𝐸′ such that 𝐸 −→𝐸′.

Theorem 4.5 (Type Preservation). If Δ ⊢𝐸 :𝐴 and 𝐸 −→𝐸′, then Δ ⊢𝐸′ :𝐴.

5 Elaboration
This section presents the elaboration rules. Following elaboration of expressions, we cover four key

aspects of elaboration: dictionary-passing elaboration of type classes (§5.1), interpretation of row

constraints (§5.2), elaboration of ind (§5.3), and elaboration of subtyping and row equivalence (§5.4).

Finally, we prove that elaboration is sound (§5.5). As before, we use blue to denote target terms.

Type-directed elaboration of expressions. Fig. 3 has presented the type-directed elaboration of

expressions. Rules var, lam, and app are straightforward, translating the source constructs into

their corresponding target terms. Rule annot simply produces the elaboration of the expression,

as the target is always fully annotated.

Rules method, qalI, and qalE handle type class constraints, and will be discussed in detail in

the next section (§5.1). Rules schemeI and schemeE introduce type abstractions and applications,

respectively. Rule let translates let expressions into applied lambdas.

Notably, elaboration erases first-class labels, as demonstrated in rule label, where a first-class

label is translated to a unit term. While labels are important for records and variants in the source

calculus, their corresponding information is replaced by constant indices for the target’s product

and sum terms. As a result, row commutativity inserts explicit conversions to ensure that the order

in elaborated product and sum terms consistently matches the order from the type (§5.4).

Rules prod and sum convert singleton record and variant terms into unlabelled product and sum

terms in the target. In rule unlabel,𝑀 must already have a singleton row type, meaning only one

element can be extracted. In these rules, the elaboration of the label is discarded.

Lastly, we explain rules prj, concat, inj, and elim along with elaborations of constraint solving

in §5.2; rule sub with the elaboration of subtyping in §5.4; and finally, rule ind in §5.3.

Elaboration of types and constraints. Fig. 8, 9, and 10 present elaboration environments and

selected rules for type and kind elaboration respectively. These elaboration rules will be explained

throughout the remainder of this section as their corresponding parts are discussed.

Fig. 11 presents selected constraint solving rules with their elaboration, which we discuss in §5.1

through §5.3. The full set of elaboration rules is provided in the appendix.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

Extensible Data Types with Ad-Hoc Polymorphism 20:21

Γ F 𝜖 | Γ, 𝑎 :𝜅 | Γ, 𝑥 :𝜎 | Γ,𝜓⇝𝑥 type environment
Γ𝐶 F 𝜖 | Γ𝐶 , (𝑇𝐶′

𝑖
𝑎𝑖⇝𝐴′

𝑖
⇒𝑇𝐶 𝑎 :𝜅) ↦→𝑚 :𝜎⇝𝐴 class environment

Γ𝐼 F 𝜖 | Γ𝐼 , (∀𝑎𝑖 :𝜅𝑖 .𝜓𝑖⇝𝑥𝑖 ⇒𝑇𝐶 𝜏)⇝𝐸;𝐸′
𝑖

instance environment
Fig. 8. Elaboration environments

Γ𝐶 ; Γ ⊢𝜎 :𝜅⇝𝐴 (Kinding And Elaboration)

tc

(𝑇𝐶′
𝑖
𝑎⇝𝐴′

𝑖
⇒𝑇𝐶 𝑎 :𝜅) ↦→𝑚 :𝜎⇝𝐴 ∈ Γ𝐶
Γ𝐶 ; Γ ⊢𝜏 :𝜅⇝𝐵

Γ𝐶 ; Γ ⊢𝑇𝐶 𝜏 :C⇝ ⊗ {𝐴 [𝐵/𝑎] , 𝐴′
𝑖
[𝐵/𝑎]}

row

Γ𝐶 ; Γ ⊢ 𝜉𝑖 : L ⊢T 𝜉𝑖
Γ𝐶 ; Γ ⊢𝜏𝑖 :𝜅⇝𝐴𝑖

Γ𝐶 ; Γ ⊢ ⟨𝜉𝑖 ⊲ 𝜏𝑖⟩ :R𝜅⇝ {𝐴𝑖 }

prod

Γ𝐶 ; Γ ⊢ 𝜇 :U
Γ𝐶 ; Γ ⊢ 𝜌 :R★⇝𝐴

Γ𝐶 ; Γ ⊢Π𝜇 𝜌 :★⇝ ⊗𝐴
comm

Γ𝐶 ; Γ ⊢𝑢 :U⇝ ⊗ {}

all

Γ𝐶 ; Γ, 𝑎 :𝜅 ⊢𝜓 :C⇝𝐴 ⊢𝜅⇝𝐾 Γ𝐶 ; Γ ⊢ 𝜌 :R𝜅⇝𝐵

Γ𝐶 ; Γ ⊢All (𝜆 𝑎 :𝜅.𝜓) 𝜌 :C⇝ ⊗ ((𝜆 𝑎 :𝐾.𝐴) ⟦𝐵⟧)
contain

Γ𝐶 ; Γ ⊢ 𝜇 :U Γ𝐶 ; Γ ⊢ 𝜌0 :R𝜅⇝𝐴0 Γ𝐶 ; Γ ⊢ 𝜌1 :R𝜅⇝𝐴1 ⊢𝜅⇝𝐾

Γ𝐶 ; Γ ⊢ 𝜌0 <∼𝜇 𝜌1 :C⇝ ⊗ {∀𝑎 :𝐾 ↦→★. (⊗ (𝑎 ⟦𝐴1⟧)) →⊗ (𝑎 ⟦𝐴0⟧),∀𝑎 :𝐾 ↦→★. (⊕ (𝑎 ⟦𝐴0⟧)) →⊕ (𝑎 ⟦𝐴1⟧)}
ind

Γ𝐶 ; Γ ⊢ 𝜌 :R𝜅⇝𝐴 ⊢𝜅⇝𝐾

Γ𝐶 ; Γ, 𝑎𝑙 : L, 𝑎𝑡 :𝜅, 𝑎𝑝 𝑎𝑖 :R𝜅 ⊢𝑎𝑝 ⊙𝔫 ⟨𝑎𝑙 ⊲𝑎𝑡 ⟩ ∼𝑎𝑖 :C⇝𝐵𝑙 Γ𝐶 ; Γ, 𝑎𝑖 𝑎𝑛 :R𝜅 ⊢𝑎𝑖 ⊙𝔫 𝑎𝑛 ∼ 𝜌 :C⇝𝐵𝑟

𝐴𝑠 = ∀𝑎𝑙 :★, 𝑎𝑡 :𝐾, 𝑎𝑝 𝑎𝑖 𝑎𝑛 : L𝐾 . 𝐵𝑙 →𝐵𝑟 → (⊗ {}) → (𝑎𝑚 𝑎𝑝) →𝑎𝑚 𝑎𝑖

Γ𝐶 ; Γ ⊢ Ind 𝜌 :C⇝∀𝑎𝑚 : (L𝐾 ↦→★) . 𝐴𝑠 → (𝑎𝑚 {}) →𝑎𝑚 𝐴

Fig. 9. Type elaboration

⊢𝜅⇝𝐾 (Kind Elaboration)

⊢★⇝★

⊢𝜅0⇝𝐾0 ⊢𝜅1⇝𝐾1

⊢𝜅0 ↦→𝜅1⇝𝐾0 ↦→𝐾1

⊢𝜅⇝𝐾

⊢R𝜅⇝ L𝐾 ⊢C⇝★ ⊢ L⇝★ ⊢U⇝★

Fig. 10. Kind elaboration

5.1 Dictionary-Passing Elaboration for Type Classes
We implement type classes using the dictionary-passing elaboration [Wadler and Blott 1989]. Intu-

itively, each type class corresponds to a data type whose entries represent its methods. Type class

instances then correspond to values of these data types (i.e. dictionaries), which are implemented

using product types in our target calculus. Throughout this work, we refer to the elaboration result

of constraint solving as evidence, since our constraint solver also handles row constraints.

The type elaboration rule tc in Fig. 9 elaborates type classes to a tuple type. In the first hypothesis,

𝐴 represents the elaboration of the type of the class’s method 𝜎 , and 𝐴′
𝑖 are the elaborated types of

the superclasses. We substitute the type variable 𝑎 with the elaboration of 𝜏 . Similarly, the constraint

kind C is elaborated to the base kind ★ in the target (Fig. 10).

As a result, in Fig. 3, terms with qualified types are elaborated into functions that take the

corresponding evidence arguments (rule qalI). Evidence arguments are automatically inserted

after they are resolved (ruleqalE), and if a type class constraint can be resolved, the corresponding

method can be accessed (rule method).

Rule TCInst in Fig. 11 handles type classes. This rule applies when a corresponding entry for the

required type class𝑇𝐶 exists in the instance environment. In this rule, 𝐸 corresponds to𝑇𝐶’s method,

and 𝐸′𝑖 corresponds to the evidence for𝑇𝐶’s superclasses. In the elaboration result, type variables are
substituted with concrete types, and prerequisites are replaced with their corresponding evidence.

The elaboration for constraint solving of superclasses (TCSuper) is not presented here, but it simply

projects an element out of the subclass evidence to obtain the superclass evidence.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

20:22 Matthew Toohey, Yanning Chen, Ara Jamalzadeh, and Ningning Xie

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜓⇝𝐸 (Constraint Solving And Elaboration)

TCInst

(∀𝑎𝑘 :𝜅𝑘 .𝜓 𝑗⇝𝑥 𝑗 ⇒𝑇𝐶 𝜏)⇝𝐸;𝐸′
𝑖
∈ Γ𝐼

Γ𝐶 ; Γ ⊢𝜏 ′𝑘 :𝜅𝑘⇝𝐵𝑘 Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜓 𝑗 [𝜏 ′𝑘/𝑎𝑘]⇝ 𝐹 𝑗

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝑇𝐶 𝜏 [𝜏 ′𝑘/𝑎𝑘]⇝ (𝐸 [𝐵𝑘/𝑎𝑘]
[
𝐹 𝑗/𝑥 𝑗

]
, 𝐸′
𝑖
[𝐵𝑘/𝑎𝑘]

[
𝐹 𝑗/𝑥 𝑗

]
)

concatContainL

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 ⊙𝜇 𝜌1 ∼ 𝜌2⇝𝐸

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 <∼𝜇 𝜌2⇝𝜋2 𝐸

containDecay

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 <∼𝜇0 𝜌1⇝𝐸 𝜇0⩽ 𝜇1 Γ𝐶 ; Γ ⊢ 𝜇1 :U

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 <∼𝜇1 𝜌1⇝𝐸

splitConcat

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts Split (𝜆 𝑎 :𝜅. 𝜏) 𝜌0 𝜌1 𝜌2⇝𝐸

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts (Lift (𝜆 𝑎 :𝜅. 𝜏) 𝜌0) ⊙𝔠 𝜌1 ∼ 𝜌2⇝𝐸

liftContain

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 <∼𝜇 𝜌1⇝𝐸 Γ𝐶 ; Γ ⊢ 𝜌0 :R𝜅0 Γ𝐶 ; Γ, 𝑎 :𝜅0 ⊢𝜏 :𝜅1⇝𝐴 ⊢𝜅0⇝𝐾0

⊢𝜅1⇝𝐾1 𝐸𝑝 = Λ𝑎′ :𝐾1 ↦→★. (𝜋0 𝐸) [𝜆 𝑎 :𝐾0 . 𝑎
′𝐴] 𝐸𝑖 = Λ𝑎′ :𝐾1 ↦→★. (𝜋1 𝐸) [𝜆 𝑎 :𝐾0 . 𝑎

′𝐴]
Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts (Lift (𝜆 𝑎 :𝜅0 . 𝜏) 𝜌0) <∼𝜇 (Lift (𝜆 𝑎 :𝜅0 . 𝜏) 𝜌1)⇝ (𝐸𝑝 , 𝐸𝑖)

allContain

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts 𝜌0 <∼𝔠
𝜌1⇝ 𝐹 Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts All (𝜆 𝑎 :𝜅.𝜓) 𝜌1⇝𝐸 Γ𝐶 ; Γ, 𝑎 :𝜅 ⊢𝜓 :C⇝𝐴 ⊢𝜅⇝𝐾

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts All (𝜆 𝑎 :𝜅.𝜓) 𝜌0⇝ (𝜋0 𝐹) [𝜆 𝑎 :𝐾.𝐴] 𝐸
ind

Γ𝐶 ; Γ ⊢𝜏𝑖 :𝜅⇝𝐴𝑖
𝑖∈[:𝑛] ⊢𝜅⇝𝐾 Γ𝐶 ; Γ, 𝑎𝑙 : L, 𝑎𝑡 :𝜅, 𝑎𝑝 𝑎𝑖 :R𝜅 ⊢𝑎𝑝 ⊙𝔫 ⟨𝑎𝑙 ⊲𝑎𝑡 ⟩ ∼𝑎𝑖 :C⇝𝐵𝑙

Γ𝐶 ; Γ, 𝑎𝑖 𝑎𝑛 :R𝜅 ⊢𝑎𝑖 ⊙𝔫 𝑎𝑛 ∼ ⟨ℓ𝑖 ⊲ 𝜏𝑖
𝑖∈[:𝑛]⟩ :C⇝𝐵𝑟

𝐴𝑠 = ∀𝑎𝑙 :★, 𝑎𝑡 :𝐾, 𝑎𝑝 𝑎𝑖 𝑎𝑛 : L𝐾 . 𝐵𝑙 →𝐵𝑟 → (⊗ {}) → (𝑎𝑚 𝑎𝑝) →𝑎𝑚 𝑎𝑖

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts ⟨ℓ𝑗 ⊲ 𝜏 𝑗
𝑗∈[:𝑖]⟩ ⊙𝔫 ⟨ℓ𝑖 ⊲ 𝜏𝑖⟩ ∼ ⟨ℓ𝑘 ⊲ 𝜏𝑘

𝑘∈[:𝑖+1]⟩⇝𝐸𝑖

𝑖∈[:𝑛]

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts ⟨ℓ𝑗 ⊲ 𝜏 𝑗
𝑗∈[:𝑖+1]⟩ ⊙𝔫 ⟨ℓ𝑘 ⊲ 𝜏𝑘

𝑘∈[𝑖+1:𝑛]⟩ ∼ ⟨ℓ𝑙 ⊲ 𝜏𝑙
𝑙∈[:𝑛]⟩⇝𝐸′

𝑖

𝑖∈[:𝑛]

𝐸′′ = ((𝑥𝑠 [⊗ {}] [𝐴𝑖] [{𝐴 𝑗
𝑗∈[:𝑖] }] [{𝐴𝑘

𝑘∈[:𝑖+1] }] [{𝐴𝑙
𝑙∈[𝑖+1:𝑛] }] 𝐸𝑖) 𝐸′𝑖) ()

𝑖∈[:𝑛]
𝑥𝑖

𝐹 = Λ𝑎𝑚 : (L𝐾 ↦→★). 𝜆 𝑥𝑠 :𝐴𝑠 . 𝜆 𝑥𝑖 :𝑎𝑚 {}. 𝐸′′

Γ𝐼 ; Γ𝐶 ; Γ ⊨Ts Ind ⟨ℓ𝑖 ⊲ 𝜏𝑖
𝑖∈[:𝑛]⟩⇝ 𝐹

Fig. 11. Selected elaboration rules for constraint solving

5.2 Interpretation of Row Constraints
We first discuss the elaboration of rows. Rule row in Fig. 9 elaborates rows to type-level lists in the

target. As previously mentioned, F
⊗⊕
𝜔 ’s type-level lists are much simpler than rows, with labels

and commutativity erased. For example, rule prod discards the commutativity annotation 𝜇. If a

function is polymorphic over labels or commutativity in the source, the elaboration turns them

into type abstractions taking empty products (rule comm). The corresponding kind elaboration

rules elaborate R𝜅 to L𝐾 , and both L and U to ★ in Fig. 10.

Next, as row constraints are used primarily for records and variants, we follow Morris and

McKinna [2019] and interpret row constraints as a collection of functions operating on products

and sums. Therefore, the type elaboration rule contain in Fig. 9 elaborates row containment into a

tuple. Compared to Morris and McKinna [2019], both components of our tuple are polymorphic

over a type function. This function corresponds to the target’s type-level mappings, a crucial feature

in our higher-kinded system that is essential for solving Lift and All constraints. Then, the first
function takes a product of the larger row and produces a product of the smaller one, effectively

performing a projection. Similarly, the second function takes a sum of the smaller row and produces

a sum of the larger one, performing an injection. The elaboration rule for row concatenation

(given in the appendix) is similar, producing a product of four elements: the first two manage

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

Extensible Data Types with Ad-Hoc Polymorphism 20:23

concatenation for products and elimination for sums respectively, while the latter two provide

corresponding containment evidence.

Fig. 11 presents two example rules for row constraints. Rule concatContainL simply selects the

containment evidence from the combination evidence. Rule containDecay discards the commuta-

tivity information and produces the same evidence as its premise. Concrete evidence is generated

in the elaboration of the constraint solving rule concatConcrete for concrete rows, which can be

found in the appendix.

Returning to the term elaboration rules in Fig. 3, we can now see that rules involving row

constraints (prj, concat, inj, and elim) simply select the appropriate evidence entries for the

operations being performed. In these cases, the type-level mapping is just the identity type lambda,

as the rows of the products and sums already match those specified in the constraints.

Lift and Split. Fig. 11 also includes constraint solving elaboration for Lift, where the type-level
mappings in row constraints are crucial. Specifically, rule liftContain projects out the two entries

from the original evidence. It then wraps them in type abstractions, applying these components to

type lambdas that compose the outer mapping 𝑎′ with the current mapping 𝐴.

The type elaboration for Split is identical to that of its associated concatenation constraint with

the left side lifted. As a result, rule splitConcat simply produces the evidence from the premise.

All. The all type elaboration rule in Fig. 9 elaborates All to a product type. Here, the type-

level mapping generates a type-level list, where each entry corresponds to evidence for𝜓 with 𝑎

substituted by the corresponding entry in the row 𝜌 . The resulting product allows us to access the

evidence for any specific entry. Our encoding makes the elaboration for All constraints mostly

straightforward, primarily involving the creation and projection of products.

As an example, rule allContain in Fig. 11 extracts the projection function from the containment

evidence, applies it to the elaborated type lambda, and then to the All evidence for the larger row
𝜌1, effectively projecting out the subset of fields for the smaller row 𝜌0.

5.3 Elaboration of ind
We now consider the elaboration of ind, which performs a fold based on a row type. Elaborating

this term is non-trivial, as the types of the row constraints and the accumulator depend on the

portion of the row processed so far. One straightforward approach is to incorporate a similar

construct directly into the target calculus, elaborating ind to this new construct. However, this

would complicate the target calculus and make compilation to more standard target calculi more

challenging.

In this work, we explore an alternative compilation strategy for ind. Specifically, we introduce
a new form of constraint, Ind 𝜌 . When ind is used, the Ind constraint is required and can be

passed around just like any other constraint, as specified in the ind typing rule in Fig. 3. During

elaboration, when Ind 𝜌 is resolved, it produces an evidence term 𝐹 that performs the fold of 𝜌 .

The term elaboration then simply applies it to the type lambda, step function, and initial value.

With this elaboration strategy for ind, it is worth noting that the examples from §2 where we

used ind would now require the appropriate Ind constraints in their types. We are interested in

potentially hiding these constraints in an actual implementation using the approach of total type
classes [Weingart et al. 2024], but we leave this for future work.

Rule ind in Fig. 9 specifies the type elaboration rule for Ind. The elaborated type is polymorphic

over the type lambda 𝑎𝑚 . Like the ind term, it accepts a step function and an initial value, then

produces a final result based on the type function and elaborated row. The step function 𝐴𝑠 is

polymorphic over various components of the row and takes the left and right constraint evidence, in

addition to a unit value as the elaborated label and the accumulator, producing the next accumulator.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

20:24 Matthew Toohey, Yanning Chen, Ara Jamalzadeh, and Ningning Xie

Γ𝐶 ; Γ ⊢𝜎0 <:𝜎1⇝ 𝐹 (Subtyping And Elaboration)

prodRow

Γ𝐶 ; Γ ⊢ 𝜌0 ≡𝜇 𝜌1⇝ 𝐹𝑝 , 𝐹𝑠 Γ𝐶 ; Γ ⊢Π𝜇 𝜌0 :★
Γ𝐶 ; Γ ⊢Π𝜇 𝜌0 <:Π𝜇 𝜌1⇝ 𝐹𝑝 [𝜆 𝑎 :★. 𝑎]

decay

Γ𝐶 ; Γ ⊢Ξ𝜇0 𝜌 :★⇝𝐴

Γ𝐶 ; Γ ⊢ 𝜇1 :U 𝜇0⩽ 𝜇1

Γ𝐶 ; Γ ⊢Ξ𝜇0 𝜌 <:Ξ𝜇1 𝜌⇝ 𝜆 𝑥 :𝐴. 𝑥

Fig. 12. Subtyping and elaboration

Γ𝐶 ; Γ ⊢ 𝜌0 ≡𝜇 𝜌1⇝ 𝐹𝑝 , 𝐹𝑠 (Row Equivalence And Elaboration)

comm

⊢T 𝑝 permutes [:𝑛] for 𝜉 ⊢T 𝑝′ permutes [:𝑛] for 𝜉 𝑝 inverts𝑝′ on [:𝑛]
Γ𝐶 ; Γ ⊢ ⟨𝜉𝑖 ⊲ 𝜏𝑖

𝑖∈[:𝑛]⟩ :R𝜅⇝ {𝐴𝑖
𝑖∈[:𝑛] } ⊢𝜅⇝𝐾 𝐹𝑝 = Λ𝑎 :𝐾 ↦→★. 𝜆 𝑥 : ⊗ (𝑎 ⟦{𝐴𝑖

𝑖∈[:𝑛] }⟧) . (𝜋𝑖 𝑥𝑖∈𝑝)
𝐹𝑠 = Λ𝑎 :𝐾 ↦→★. 𝜆 𝑥 : ⊕ (𝑎 ⟦{𝐴𝑖

𝑖∈[:𝑛] }⟧). case𝑥 {𝜆 𝑥 ′ :𝑎𝐴𝑖 . 𝜄 𝑗 𝑥 ′
𝑖∈[:𝑛], 𝑗∈𝑝′ }

Γ𝐶 ; Γ ⊢ ⟨𝜉𝑖 ⊲ 𝜏𝑖
𝑖∈[:𝑛]⟩ ≡𝔠 ⟨𝜉𝑖 ⊲ 𝜏𝑖

𝑖∈𝑝 ⟩⇝ 𝐹𝑝 , 𝐹𝑠

Fig. 13. Row equivalence and elaboration

The constraint solving rule ind in Fig. 11 resolves Ind for concrete rows. The first five hypotheses
collect types and kinds needed when describing the evidence. Since each step of the fold performed

by ind is provided two concatenation constraints, the next two hypotheses collect the evidence for

these. 𝐸′′ then assembles the body of the evidence function, in which the step function argument 𝑥𝑠
(of type 𝐴𝑠) is applied once for each entry in the row, performing the fold. Each repetition within

𝐸′′’s comprehension passes five type arguments: the unit type for the erased label type, the type of

the current row entry, and the three sub-components of the larger row. It also passes the correct

left and right concatenation constraint evidence, then a unit for the erased label term. Finally, 𝐹

wraps the body 𝐸′′ in a type abstraction, as well as abstractions taking the step function and the

initial value term respectively.

5.4 Subtyping and Row Equivalence
Fig. 12 and 13 present selected elaborations for subtyping and row equivalence. Subtyping produces

functions that convert a term from the elaborated subtype to the elaborated supertype, while row

equivalence produces two functions for conversions involving products and sums, respectively.

Rule prodRow uses the elaboration for products from the equivalence relation, and applies it to

the identity type lambda. While the type-level mapping is not useful here, it is necessary for cases

such as All. Rule decay simply produces an identity function, since commutativities are erased.

The elaboration rule comm for commutative rows re-orders the entries within the elaboration to

match the re-ordering of the entries in the source row.

5.5 Elaboration Soundness
In this section, we prove that our elaboration is sound, specifically with row theory Ts, beginning
with soundness of types and constraints:

Theorem 5.1 (Elaboration Soundness of Types and Constraints).
(Kinding) If Γ𝐶 ; Γ ⊢𝜎 :𝜅⇝𝐴, and ⊢𝜅⇝𝐾 , and Γ𝐶 ⊢ Γ⇝Δ, then Δ ⊢𝐴 :𝐾 .
(Row Equivalence) If Γ𝐶 ; Γ ⊢ 𝜌0 ≡𝜇 𝜌1⇝ 𝐹𝑝 , 𝐹𝑠 , Γ𝐶 ; Γ ⊢ 𝜌0 :R𝜅⇝𝐴, Γ𝐶 ; Γ ⊢ 𝜌1 :R𝜅⇝𝐵, ⊢𝜅⇝𝐾 ,

and Γ𝐶 ⊢ Γ⇝Δ, then Δ ⊢ 𝐹𝑝 :∀𝑎 :𝐾 ↦→★. (⊗ (𝑎 ⟦𝐴⟧)) →⊗ (𝑎 ⟦𝐵⟧) and
Δ ⊢ 𝐹𝑠 :∀𝑎 :𝐾 ↦→★. (⊕ (𝑎 ⟦𝐴⟧)) →⊕ (𝑎 ⟦𝐵⟧).

(Subtyping) If Γ𝐶 ; Γ ⊢𝜎0 <:𝜎1⇝ 𝐹 , Γ𝐶 ; Γ ⊢𝜎0 :𝜅⇝𝐴, Γ𝐶 ; Γ ⊢𝜎1 :𝜅⇝𝐵, ⊢𝜅⇝★, and Γ𝐶 ⊢ Γ⇝Δ,
then Δ ⊢ 𝐹 :𝐴→𝐵.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

Extensible Data Types with Ad-Hoc Polymorphism 20:25

Table 1. Code statistics for the Lean 4 mechanization

Module Description LOC #Def #Thm

Source Language (𝜆⇒𝜌)
Syntax Kinds, types, terms, programs, and environments 157 21 /

Semantics Kinding, typing, constraint solving, elaboration, etc. 1 052 54 /

Lemmas Auxiliary lemmas and properties 3 665 4 121

Theorems Elaboration soundness 7 430 / 14

Target Language (F⊗⊕𝜔)
Syntax Kinds, types, terms, and environments 175 13 /

Semantics Kinding, typing, and operational semantics 697 59 /

Lemmas Auxiliary lemmas and properties 4 042 4 277

Type Reduction Strong normalization, confluence, correspondence to equivalence, etc. 4 965 8 182

Theorems Syntactic type safety 566 / 17

Total 22 749 163 611

(Constraint Solving) If Γ𝐼 ; Γ𝐶 ; Γ ⊨T 𝜓⇝𝐸, Γ𝐶 ; Γ ⊢𝜓 :C⇝𝐴, and Γ𝐶 ⊢ Γ⇝Δ, then Δ ⊢𝐸 :𝐴.

This theorem has several parts for kinding, row equivalence, subtyping, and constraint solving,

respectively. The judgement Γ𝐶 ⊢ Γ⇝Δ states that the environment Γ is well-formed under the class

environment Γ𝐶 and elaborates to the target environment Δ; for clarity, we implicitly assume all

class and instance environments are well-formed. The proof of the constraint solving part is notably

lengthy, primarily due to the verbosity of the row elaboration rules. The target’s equivalence rules

(listAppComp and listAppId) for type-level lists are essential in the proofs for Lift.
Finally, we prove program and term elaboration is sound; we present the statement for terms:

Theorem 5.2 (Elaboration Soundness of Terms).
If Γ𝐼 ; Γ𝐶 ; Γ ⊢𝑀 :𝜎⇝𝐸, and Γ𝐶 ; Γ ⊢𝜎 :★⇝𝐴, and Γ𝐶 ⊢ Γ⇝Δ, then Δ ⊢𝐸 :𝐴.

6 Mechanization
We have formalized the metatheory of 𝜆⇒𝜌 and F

⊗⊕
𝜔 using the Lean 4 proof assistant [Moura and

Ullrich 2021], and the proofs are available in the artifact [Toohey et al. 2025]. Table 1 summarizes

the structure and statistics of our mechanization. Our formalization adopts the locally nameless

representation [Charguéraud 2011] for handling binding and leverages the Aesop proof search

tactic [Limperg and From 2023] for proof automation. The proof of strong normalization for F
⊗⊕
𝜔 ’s

type reduction took inspiration from a strong normalization proof for the simply typed lambda

calculus in Lean [Mameche 2019], and this was used to establish confluence by importing a prior

proof of Newman’s lemma [van Kampen 2025].

There were two notable obstacles we encountered and solved in the mechanization process.

First, our formalization employs nested inductive types to define rows in 𝜆⇒𝜌 and type-level lists in

F
⊗⊕
𝜔 . Unfortunately, the standard induction tactic in Lean 4 does not automatically handle nested

inductive types. We addressed this by defining specialized induction principles for these constructs

that explicitly deal with inductive reasoning on lists.

Second, we define the type equivalence judgement as a proposition. To prove that type equivalence

(Δ ⊢𝐴≡𝐵) implies the equivalence closure of type reduction (Δ ⊢𝐴↔∗ 𝐵), we needed to establish

that any type equivalence proof could be transformed into a derivation where symmetry (symm)

and transitivity (trans) rules are applied only at the top level. A natural approach would be to

define a proposition indexed by such a derivation to capture this property. However, this does

not work because Lean’s metatheory implies proof irrelevance, rendering multiple proofs of the

same type equivalence judgement definitionally indistinguishable. To overcome this limitation, we

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

20:26 Matthew Toohey, Yanning Chen, Ara Jamalzadeh, and Ningning Xie

Table 2. B2T2 table API functions

Category Supported Description

Constructors 9/9 Creating, combining, and expanding tables.

Properties 3/3 Querying table shape information.

Access subcomponents 3/4 Extracting a row, value, or column.

Subtable 8/10 Extracting a subset of the table.

Ordering
∗

3/3 Sorting. orderBy requires existential types.

Aggregate
∗

4/4 Reducing multiple rows into fewer summary rows.

Missing values 3/3 Handling for optional values.

Data cleaning 2/2 Pivoting longer or wider.

Utilities
∗

11/11 Misc. renameColumns also needs more row operators.

introduced a new judgement Δ ⊢𝐴≡𝑠 𝐵 that enforces the desired property by construction, and

prove equivalence between Δ ⊢𝐴≡𝑠 𝐵 and Δ ⊢𝐴≡𝐵, complicating the metatheory development.

7 Evaluation
The Brown Benchmark for Table Types (B2T2) [Lu et al. 2021] provides criteria for evaluating type

systems designed for tabular data. Given that record types are a well-known encoding for table

types, we evaluate our type system against the B2T2 set of table API functions. For the purposes of

this evaluation we assume support for lists, though they were not included in our formalism.

Table 2 lists the B2T2 benchmark’s table API functions. We represent table schemas (column

names and their corresponding types) as rows, and tables as lists of products. Our system offers

several benefits: First, extensible rows readily express table schemas, while type classes provide

necessary methods for operations like equality and comparison, and All enables defining generic
functions over rows whose fields all possess a certain property. Moreover, our commutativity

hierarchy allows us to use commutativity for functions where ordering is irrelevant, and non-

commutativity when table columns must be ordered and folded deterministically. Lastly, our Lift
and Split enable type-level updates to rows (similar to the unlift example in §2.2).

We discuss a few examples. The leftJoin constructor function takes two tables, t1 and t2. It merges

fields from t2 into t1 based on the shared columns, creating a new table. Fields are filled with

Nothing if no matches are found in t2. The function has type:

leftJoin : ∀(rc rl’ rr’ rl rr r : 𝑅) (𝜇 :𝑈).
(All Eq rc, rc ⊙𝜇 rl’ ∼ rl, rc ⊙𝜇 rr’ ∼ rr, rl ⊙𝜇 Lift Option rr’ ∼ r)

⇒ List (Π𝜇 rl) → List (Π𝜇 rr) → List (Π𝜇 r)

Here, All requires that the rc row in the join must implement Eq. The row constraints describe the

relationships between different variables, with the last one specifying that the output table’s row r
consists of the left row rl, concatenated with an Option-Lifted version of rr’ in the right row.

As another example, the data cleaning function pivotWider converts a table containing a key
column and a value column into to a wider table. The wider table will have a column for each

distinct case of the key variant. The entries in these new columns are the corresponding entries

from the original value column, if such an entry exists. We have the function’s type as:

pivotWider : ∀(r rk rr r’ : 𝑅) (lk lv : 𝐿) (t :★) (𝜇 :𝑈).
(All Eq rr, ⟨lk ⊲ Σ𝜇 (Lift (Const Unit) rk), lv ⊲ t ⟩ ⊙𝜇 rr ∼ r, rr ⊙𝜇 Lift (Const (Option t)) rk ∼ r’)

⇒ List (Π𝜇 r) → ⌊lk⌋ → ⌊lv⌋ → List (Π𝜇 r’)

Here, row r consists of lk for the key, lv for the value, and rr for the rest. All requires all entries
in rr to satisfy Eq so that rows, identical except for their keys and values, can be combined in the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

Extensible Data Types with Ad-Hoc Polymorphism 20:27

result. This example also demonstrates the utility of rows for both products and sums: the rk row

is Lifted to units within the lk variant, while it is Lifted to Option t in the r’ product in the result.

Lastly, we note that our system cannot implement three functions that access columns based

on Int or Bool inputs, as they require types to depend on terms (i.e. dependent types). And our

implementations for three other functions (their categories are marked with
∗
) are slightly weaker

than their specified requirements. For example, while two functions in the benchmark process

multiple columns simultaneously, our system can only operate on a single column at a time. Despite

lackingmore advanced types for these cases, we believe that this evaluation effectively demonstrates

the utility of extensible rows with type classes for table types.

8 Related Work
Row types and polymorphism. Morris and McKinna [2019] propose Rose, a general framework

for abstracting and unifying row theories, which Hubers and Morris [2023] later extend to support

generic programming over rows. Our calculus builds upon Rose, but extends it in several ways.

First, we support type classes, featuring a novel form of All constraints that allow us to express

class constraints over polymorphic rows. In contrast, Hubers and Morris [2023] applies the same

function uniformly across all fields of a row. As a result, it requires explicit passing, selection,

and application of evidence, similar to our target calculus. Moreover, while their work supports

three language primitives (called syn, ana, and fold) for generic operations on records and variants,

our ind construct can be used in place of all three. Furthermore, we support row commutativity

annotations over records, variants, and constraints, as well as commutativity polymorphism, and

the ability to split rows according to type shapes using Split .

Generic programming over algebraic data types (ADTs). Generic programming has a rich

literature. Of particular relevance to our work, there are several attempts to support generic folding

operations over products and ADTs. Chlipala [2010] introduces a folder type family for type-level

records, enabling generic operations over record structures. However, their approach does not

specify the actual implementation of the folder function and relies on field name ordering as hints

for permutations. Other relevant works include the Typable type class by Lämmel and Jones [2003]

for generic traversals over ADTs, and an All type family over ADTs by de Vries and Löh [2014] that

is semantically similar to our All constraint. However, these approaches cannot easily extend or

mutate field types or orders due to the inherent limitations of ADTs.

Tabular types. Tabular type systems are an umbrella term for type systems supporting generic

programming over tabular data. Lu et al. [2021] introduces the B2T2 benchmark suite for tabular

type systems. It’s a well-known approach to use polymorphic records and variants to encode tabular

data. Our evaluation (§7) shows that 𝜆⇒𝜌 can express a substantial portion of tabular operations

in the benchmark. Another natural approach is to use dependent types, as demonstrated by an

implementation of the benchmark in Idris2 by Wright et al. [2022], which leverages the prover’s

proof search capabilities for evidence reconstruction.

Acknowledgments
This work is funded by the Natural Sciences and Engineering Research Council of Canada.

Data Availability Statement
The Lean 4 proofs of this paper are provided in the artifact [Toohey et al. 2025].

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

20:28 Matthew Toohey, Yanning Chen, Ara Jamalzadeh, and Ningning Xie

References
Bernard Berthomieu and Camille Le Monies De Sagazan. 1995. A Calculus of Tagged Types, with applications to process

languages. Types for Program Analysis (1995), 1.
Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and implementation. Journal

of Functional Programming 23, 5 (2013), 552–593. doi:10.1017/S095679681300018X

Luca Cardelli and John C. Mitchell. 1990. Operations on records. In Mathematical Foundations of Programming Semantics,
M. Main, A. Melton, M. Mislove, and D. Schmidt (Eds.). Springer, New York, NY, 22–52. doi:10.1007/BFb0040253

Arthur Charguéraud. 2011. The Locally Nameless Representation. Journal of Automated Reasoning 49, 3 (May 2011), 363–408.

doi:10.1007/s10817-011-9225-2

Adam Chlipala. 2010. Ur: statically-typed metaprogramming with type-level record computation. In Proceedings of the 31st
ACM SIGPLAN Conference on Programming Language Design and Implementation (Toronto, Ontario, Canada) (PLDI ’10).
Association for Computing Machinery, New York, NY, USA, 122–133. doi:10.1145/1806596.1806612

Edsko de Vries and Andres Löh. 2014. True sums of products. In Proceedings of the 10th ACM SIGPLAN Workshop on Generic
Programming (Gothenburg, Sweden) (WGP ’14). Association for Computing Machinery, New York, NY, USA, 83–94.

doi:10.1145/2633628.2633634

Jacques Garrigue. 1998. Programming with Polymorphic Variants. In ML workshop, Vol. 13. Baltimore.

Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and types. Cambridge University Press, USA.

Robert Harper and Benjamin Pierce. 1991. A record calculus based on symmetric concatenation. In Proceedings of the
18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Orlando, Florida, USA) (POPL ’91).
Association for Computing Machinery, New York, NY, USA, 131–142. doi:10.1145/99583.99603

Daniel Hillerström and Sam Lindley. 2016. Liberating effects with rows and handlers. In Proceedings of the 1st International
Workshop on Type-Driven Development (Nara, Japan) (TyDe 2016). Association for Computing Machinery, New York, NY,

USA, 15–27. doi:10.1145/2976022.2976033

Alex Hubers and J. Garrett Morris. 2023. Generic Programming with Extensible Data Types: Or, Making Ad Hoc Extensible

Data Types Less Ad Hoc. Proc. ACM Program. Lang. 7, ICFP, Article 201 (Aug. 2023), 29 pages. doi:10.1145/3607843
Mark P. Jones. 2003a. Qualified types: theory and practice. Number 9. Cambridge University Press.

Simon Peyton Jones. 2003b. Haskell 98 language and libraries: the revised report. Cambridge University Press.

Ralf Lämmel and Simon Peyton Jones. 2003. Scrap your boilerplate: a practical design pattern for generic programming.

SIGPLAN Not. 38, 3 (Jan. 2003), 26–37. doi:10.1145/640136.604179
Daan Leijen. 2004. First-class labels for extensible rows (technical report uu-cs-2004-51 ed.). Technical Report UU-CS-2004-51.

https://www.microsoft.com/en-us/research/publication/first-class-labels-for-extensible-rows/ UTCS Technical Report.

Daan Leijen. 2005. Extensible records with scoped labels. In Proceedings of the 2005 Symposium on Trends in Functional
Programming (TFP’05), Tallin, Estonia (proceedings of the 2005 symposium on trends in functional programming (tfp’05),

tallin, estonia ed.). https://www.microsoft.com/en-us/research/publication/extensible-records-with-scoped-labels/

Daan Leijen. 2017. Type directed compilation of row-typed algebraic effects. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (Paris, France) (POPL ’17). Association for Computing Machinery,

New York, NY, USA, 486–499. doi:10.1145/3009837.3009872

Jannis Limperg and Asta Halkjær From. 2023. Aesop: White-Box Best-First Proof Search for Lean. In Proceedings of the 12th
ACM SIGPLAN International Conference on Certified Programs and Proofs (Boston, MA, USA) (CPP 2023). Association for

Computing Machinery, New York, NY, USA, 253–266. doi:10.1145/3573105.3575671

Sam Lindley and James Cheney. 2012. Row-based effect types for database integration. In Proceedings of the 8th ACM
SIGPLAN Workshop on Types in Language Design and Implementation (Philadelphia, Pennsylvania, USA) (TLDI ’12).
Association for Computing Machinery, New York, NY, USA, 91–102. doi:10.1145/2103786.2103798

Sam Lindley and J. Garrett Morris. 2017. Lightweight functional session types. Behavioural Types: from Theory to Tools.
River Publishers (2017), 265–286.

Kuang-Chen Lu, Ben Greenman, and Shriram Krishnamurthi. 2021. Types for Tables: A Language Design Benchmark. The
Art, Science, and Engineering of Programming 6, 2 (Nov. 2021). doi:10.22152/programming-journal.org/2022/6/8

Sarah Mameche. 2019. Strong Normalization of the λ-calculus in Lean.

J. Garrett Morris and James McKinna. 2019. Abstracting extensible data types: or, rows by any other name. Proc. ACM
Program. Lang. 3, POPL, Article 12 (Jan. 2019), 28 pages. doi:10.1145/3290325

Leonardo de Moura and Sebastian Ullrich. 2021. The Lean 4 Theorem Prover and Programming Language. In Automated
Deduction – CADE 28, André Platzer and Geoff Sutcliffe (Eds.). Springer International Publishing, Cham, 625–635.

doi:10.1007/978-3-030-79876-5_37

Maxwell Herman Alexander Newman. 1942. On Theories with a Combinatorial Definition of “Equivalence”. Annals of
Mathematics 43, 2 (1942), 223–243. doi:10.2307/1968867

Adam Paszke and Ningning Xie. 2023. Infix-Extensible Record Types for Tabular Data. In Proceedings of the 8th ACM
SIGPLAN International Workshop on Type-Driven Development (Seattle, WA, USA) (TyDe 2023). Association for Computing

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1007/BFb0040253
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1145/1806596.1806612
https://doi.org/10.1145/2633628.2633634
https://doi.org/10.1145/99583.99603
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1145/3607843
https://doi.org/10.1145/640136.604179
https://www.microsoft.com/en-us/research/publication/first-class-labels-for-extensible-rows/
https://www.microsoft.com/en-us/research/publication/extensible-records-with-scoped-labels/
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/3573105.3575671
https://doi.org/10.1145/2103786.2103798
https://doi.org/10.22152/programming-journal.org/2022/6/8
https://doi.org/10.1145/3290325
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.2307/1968867

Extensible Data Types with Ad-Hoc Polymorphism 20:29

Machinery, New York, NY, USA, 29–43. doi:10.1145/3609027.3609406

Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.). The MIT Press.

D. Rémy. 1989. Type checking records and variants in a natural extension of ML. In Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’89). Association for Computing

Machinery, New York, NY, USA, 77–88. doi:10.1145/75277.75284

Didier Rémy. 1992. Typing record concatenation for free. In Proceedings of the 19th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Albuquerque, NewMexico, USA) (POPL ’92). Association for Computing Machinery,

New York, NY, USA, 166–176. doi:10.1145/143165.143202

Didier Rémy and Jérôme Vouillon. 1998. Objective ML: An effective object-oriented extension to ML. Theory and Practice of
Object Systems 4, 1 (1998), 27–50. doi:10.1002/(SICI)1096-9942(1998)4:1<27::AID-TAPO3>3.0.CO;2-4

Mark Shields and Erik Meijer. 2001. Type-indexed rows. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (London, United Kingdom) (POPL ’01). Association for Computing Machinery, New

York, NY, USA, 261–275. doi:10.1145/360204.360230

Lau Skorstengaard. 2019. An Introduction to Logical Relations. (2019). arXiv:1907.11133 [cs.PL] doi:10.48550/arXiv.1907.11133

Matthieu Sozeau and Nicolas Oury. 2008. First-Class Type Classes. In Theorem Proving in Higher Order Logics, Otmane Ait

Mohamed, César Muñoz, and Sofiène Tahar (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 278–293. doi:10.1007/

978-3-540-71067-7_23

Matthew Toohey, Yanning Chen, Ara Jamalzadeh, and Ningning Xie. 2025. Extensible Data Types with Ad-Hoc Polymorphism
(Artifact). doi:10.5281/zenodo.17298033

Sam van Kampen. 2025. Abstract Rewriting Formalized in Lean.

P. Wadler and S. Blott. 1989. How to make ad-hoc polymorphism less ad hoc. In Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’89). Association for Computing

Machinery, New York, NY, USA, 60–76. doi:10.1145/75277.75283

Mitchell Wand. 1987. Type inference for simple objects. In Proc., IEEE Symposium on Logic in Computer Science. 37–44.
Mitchell Wand. 1991. Type inference for record concatenation and multiple inheritance. Information and Computation 93, 1

(1991), 1–15. doi:10.1016/0890-5401(91)90050-C Selections from 1989 IEEE Symposium on Logic in Computer Science.

Robert Weingart, Nicolas Wu, and Cristian Cadar. 2024. Total Type Classes: Improving the ergonomics of type-level

programming in Haskell. (2024).

Robert Wright, Michel Steuwer, and Ohad Kammar. 2022. Idris2-Table: evaluating dependently-typed tables with the Brown

Benchmark for Table Types.

Received 2025-07-10; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.

https://doi.org/10.1145/3609027.3609406
https://doi.org/10.1145/75277.75284
https://doi.org/10.1145/143165.143202
https://doi.org/10.1002/(SICI)1096-9942(1998)4:1<27::AID-TAPO3>3.0.CO;2-4
https://doi.org/10.1145/360204.360230
https://arxiv.org/abs/1907.11133
https://doi.org/10.48550/arXiv.1907.11133
https://doi.org/10.1007/978-3-540-71067-7_23
https://doi.org/10.1007/978-3-540-71067-7_23
https://doi.org/10.5281/zenodo.17298033
https://doi.org/10.1145/75277.75283
https://doi.org/10.1016/0890-5401(91)90050-C

	Abstract
	1 Introduction
	2 Overview
	2.1 Extensible Rows, Records, and Variants
	2.2 Extensible Rows with Ad-hoc Polymorphism

	3 Declarative Type System
	3.1 Syntax
	3.2 Typing
	3.3 Constraint Solving

	4 Target Calculus
	4.1 Typing and Operational Semantics
	4.2 Type Soundness

	5 Elaboration
	5.1 Dictionary-Passing Elaboration for Type Classes
	5.2 Interpretation of Row Constraints
	5.3 Elaboration of ind
	5.4 Subtyping and Row Equivalence
	5.5 Elaboration Soundness

	6 Mechanization
	7 Evaluation
	8 Related Work
	Acknowledgments
	References

