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This paper proposes a novel language design that combines extensible data types, implemented through row
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introduces several new constructs and constraints useful for generic operations over rows. We formalize our
design in a source calculus 157, which elaborates into a target calculus FE®. We prove that the target calculus is
type-safe and that the elaboration is sound, thus establishing the soundness of A7”. All proofs are mechanized
in the Lean 4 proof assistant. Furthermore, we evaluate our type system using the Brown Benchmark for Table
Types, demonstrating the utility of extensible rows with type classes for table types.
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1 Introduction

Modularity stands as a fundamental property in software development, making systems easier to
understand, maintain, and evolve. One significant challenge in achieving modularity in data types
has traditionally been the difficulty of extending them in a type-safe manner without breaking
existing code. This is where row types [Wand 1987] offer a compelling approach, which facilitates
the creation of extensible data types by allowing developers to add new fields to a data type without
compromising type safety or requiring widespread modifications across the codebase.

Rows are, at their core, a mapping from labels to types, effectively capturing the structure of
records and variants. Row types have been extensively studied in the literature [Cardelli and
Mitchell 1990; Harper and Pierce 1991; Leijen 2005; Rémy 1989, 1992; Shields and Meijer 2001;
Wand 1991], and have found various applications, particularly through row polymorphism, a form of
parametric polymorphism that enables abstraction over possible row extensions. Row types form the
basis for the object-oriented features [Rémy and Vouillon 1998] and polymorphic variants [Garrigue
1998] in OCaml, and are employed to express effect types [Hillerstrom and Lindley 2016; Leijen
2017; Lindley and Cheney 2012] and extensible choices in session types [Lindley and Morris 2017].
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While parametrically polymorphic functions are useful for functions whose behaviours are
entirely uniform in its type argument, there often arises a need to leverage specific knowledge
about that type. Consider, for instance, defining an equality function that compares two values.
Such a function is not universally definable; more crucially, its behaviour may differ fundamentally
depending on the type. To address this, type classes [Wadler and Blott 1989] offer a powerful
approach for achieving ad-hoc polymorphism by allowing functions to be overloaded, with qualified
types [Jones 2003a] expressing type class constraints. For example, Haskell’s equality function (==
has type Va. Eg a = a — a — Bool, indicating that any instantiation of a must be an instance
of the Eq type class. Type classes have been widely adopted in numerous languages including
Haskell [Jones 2003b], Rocq [Sozeau and Oury 2008], and Idris [Brady 2013], among others.

Now, let us consider defining an equality function for a record type. In scenarios where all
types within the record are fully specified and known to be comparable, the record’s equality
function (==) can be implemented by a pairwise comparison of corresponding fields. However,
explicitly defining such a type class instance for records can quickly become tedious. Moreover,
more significant challenges arise when defining such an equality function for extensible record
types. First, extending a record with additional fields requires programmers to re-provide a type
class instance (e.g. £q) for the extended record, imposing an unnecessary and burdensome overhead.
Moreover, and more fundamentally, the inherent nature of row polymorphism prevents us from
fully specifying all types within a record. Consequently, we are unable to formally express that
all fields in the extended row must support the necessary type class constraint. This restricts the
practical extensibility of row types in the presence of ad-hoc polymorphism, as the inability to
express type class constraints on extended rows prevents the application of ad-hoc polymorphic
functions to these extensible data types. As a result, programmers are now forced to write significant
boilerplate code for functions operating on each record extension, and, as the record schemas
evolve, maintaining and updating the code becomes increasingly complex and error-prone.

This paper aims to address these challenges by providing a novel combination of extensible
data types, implemented through row types, with ad-hoc polymorphism, through type classes.
Specifically, we offer the following contributions:

e We contribute a novel design for a type system that features row polymorphism, records, variants,
and type classes, which allows us to express type class constraints over polymorphic rows (§2):

— We contribute a new form of All constraints, where a specific property holds across all fields.

— We propose ind, a new language construct for folding over rows.

— We introduce row commutativity annotations, allowing for strict row ordering when necessary.
Our system also supports commutativity-polymorphic functions, and we further establish a
commutativity hierarchy by treating non-commutativity as a subtype of commutativity.

— We support Lift, a type-level mapping of rows, which is particularly useful in systems where
rows can be higher-kinded [Hubers and Morris 2023].

- Additionally, we introduce a novel unlifting constraint, Split, which is useful for splitting
rows based on their type information.

e We formalize our design in A5”, a source calculus featuring row constraints (following abstracting
extensible data types [Morris and McKinna 2019]), first-class labels [Leijen 2004], the row folding
construct ind, and type classes, along with all the aforementioned features (§3).

e We present F&®, a target calculus extending System Fo with type-level lists and mappings (§4),
and prove its syntactic type soundness (Thms. 4.4 and 4.5). We then present a type-directed
elaboration of 177 into the target calculus F&9, through dictionary-passing elaboration of type
classes, interpretations of row constraints, and a constraint-based strategy for elaborating ind
(§5). We prove elaboration soundness (Thms. 5.1 and 5.2).
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o We have mechanized all lemmas and proofs in the Lean 4 proof assistant (§6).
o We evaluate our type system using the benchmark for table types [Lu et al. 2021], demonstrating
that constraints over records can effectively express types for operations over table data (§7).
Our formalism is detailed, and some rules are elided for space reasons. The complete set of rules is
included in the appendix, which can be found in the artifact [Toohey et al. 2025] along with the
Lean 4 proofs.

2 Overview

This section introduces the features of our calculi: §2.1 explores row types that capture the structures
of records and variants, highlighting their utility in defining extensible data types; and §2.2 provides
background on type classes, and details our design that integrates them with extensible rows. For
clarity, we use Haskell-like syntax for examples throughout this section.

2.1 Extensible Rows, Records, and Variants

Row types, originally introduced by Wand [1987] to model inheritance, provide an approach to
typing extensible records and variants. Intuitively, rows define a mapping from labels to types. As
an example, consider the following row:

pet £ (name String, age> Int, weight > Float
This pet row specifies three fields: name of type String, age of type Int, and weight of type Float.

Records. Row types are fundamental to representing the structure of records. Writing { [~ e} for
record expressions, and I1 for record types constructed from rows, we can define an expression:

alice = { name~ “alice”, age~ 2, weight > 2.4} : I pet

Here, alice is a record of type 1 pet. The IT acts as a type constructor that takes a row (in this case,
pet) and denotes a record type.

We use (+) for record concatenation, which comes in handy for extending records with new
fields. For example, we can extend alice with an additional favourite_food field:

alice + { favourite_food » “fish”} : I1(name= String, age~ Int, weight > Float, favourite_food > String

We leave the details of which labels can appear together in a row abstract for now, as different row
theories exist [Morris and McKinna 2019].

To access a field within a record, we use the r/[ operator, which projects field { out of record r.!
For instance, the function:

getName = Ax. x/name

takes a record and returns the value of its name field. Thus, (getName alice) would return “alice”.

Variants. Similarly, the > type constructor builds variant types from rows. Writing [ [~ e] for
variant expressions, we can define:

shape £ (rectangle length > Float, width> Float), circle radius > Float
r = [rectangle~{ length~ 2.0, width>3.0}] : > shape
Here, r is a rectangle with a length and a width, which is then injected into a variant type > shape.

A > shape variant can be either a rectangle or a circle.
To calculate the area of such a variant type, we define the area function:

IFor clarity, we use r/[ to project a field from a record that may contain multiple fields. In the formalism (§3), we require
explicit projections (prj), and r/[ is always used to project from singleton records. Similarly for variants, [ [> e] can have a
type with multiple entries here, but the formalism requires explicit injections (inj) for creating non-singleton variants.
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area : >. shape — Float
area = (Ax. (x/rectangle/length) = (x/rectangle/width)) V (1y.3.14 = (y/circle/ radius) #x 2)

The area function effectively matches the actual value of its input. It does so by combining (V)
two functions: one for rectangle values (> (rectangle length> Float, width> Float)) — Float) and
another for circle values (> (circle radius> Float)) — Float). We again use the (/) operator to
access a field from a variant. Therefore, we have (area r) return 6.0.

Row polymorphism. Now, consider: what type should we give to getName? A simple choice
like 11 pet — String would correctly type (getName alice). However, getName fundamentally only
requires its argument to have a name field, regardless of any other fields the argument may contain.

Row polymorphism offers a more explicit and powerful approach to typing such polymorphic
functions. Following Morris and McKinna [2019], we express two key relations on rows, containment
and combination, as predicates in qualified types [Jones 2003a].

Specifically, since the argument to getName must contain a name field of some type a, we
represent the input row as a variable r and impose a constraint on it:

getName :V(a: x) (r:R). (name>a) <r = 1lr — a

Here, getName is polymorphic over two type variables a and r with different kinds: % is the base
kind for types, while R is the kind for rows; we say r is a row variable. Moreover, (name>a) <risa
row containment constraint, signifying that the row r must contain (name a). The function can
thus take any record I r with a name field, and return a value of type a.

Row polymorphism is useful for preserving information about the original argument. For example,
consider a function that returns both the argument’s name field and the original record itself:

getNameAndRecord :V(a: %) (r:R). (name>a) <r = 1lr — (allr)
getNameAndRecord = Ax. (x/name, x)

In this case, getNameAndRecord’s return type accurately preserves the full type of the argument x. If
we were to solely rely on structural subtyping with a type like Va. [1{name> a) — (a,[1{name> a))
for the function, we would lose information about any additional fields in the record.

Now we turn to the row combination constraint.” We have seen how the (+) operator is useful for
concatenating records for extension, but this operation can also introduce complexities. Consider
the following function adapted from Wand [1991]:

Ax y.(x + y)/name

This function first concatenates two records, x and y, and then accesses the name field from the
resulting concatenated record. The challenge lies in determining its type: specifically, we know
that either x or y must contain a name field, but we do not know which one.

A row combination constraint (r7 © r2~ r3) states that concatenating two rows, r1 and r2,
yields r3. Expressing row combination this way allows for various distinct interpretations of record
extensions, such as how duplicate labels are handled, which can be implemented as different
constraint resolution approaches. With this, we can precisely express the function’s type as:®

V(a:%) (r1r2r3:R).(r1® r2~r3,(name>a) <r3) = llr1 = 11r2 - a

“While r1 < ris often only satisfiable when there exists a r2such that r1 © r2~ r, r1 < r more closely reflects the term structure
and thus the constraint elaboration (§5) [Morris and McKinna 2019]. Moreover, as we will see in §2.2, non-commutative row
containment does not straightforwardly correspond to row combination.

3We often write (a b c: k) as a shorthand for (a: k) (b: k) (c: k).
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This type incorporates two key constraints: (r7 © r2 ~ r3) expresses that r3 is the result of concate-
nating rows r1and r2, and ((name> a) < r3) expresses that the combined row r3 must have a name
field of type a. The function then takes two records I1r7 and 1 r2, and produces a value of a.

First-class labels. So far we have been working with concrete labels; e.g. getName always gets
the name field. Our system supports first-class labels [Leijen 2004], thus allowing labels to be passed
as arguments to functions or returned as results, just like any other value.

First-class labels are useful for defining functions that are generic over labels. For example, it
lets us assign the following type to the record field access operator (/):

(/):Y(l:L) (a: %) (r:R).{Ilray<r=1lr— |l > a

Here, the function is polymorphic over three type variables: a label variable [ of kind L, a row
variable r of kind R, and a type variable a of kind *. The constraint (/> a) < r indicates that the row
r must contain a field [ with type a. The function then accepts a record of type I1r, a label of type

[|, and returns a value of type a. Note that | | is the singleton type for label [.* Thus if { : L, then

[] : %. For instance, we have name : | name|. From this, we can derive the type we have seen for
getName :V(a: %) (r:R). (name>a) <r = 1lr — a

We can extend first-class labels to first-class rows [Paszke and Xie 2023], denoting singleton

row types by | r|. Often, though, we only need the label information from these rows, as the type
information can typically be retrieved from the records or variants where the row is used, much
like how a label [ is used in the (/) operator. Therefore, in our system, we model first-class rows
simply by records whose fields always map to the unit type. For example, | (name® String, age> Int
denotes [[{name*> Unit, age> Unit). Thus, if r: R, then | r| : %. On the term level, correspondingly, we
write { name, age} to denote { name=(), age~() }. Instead of treating these as primitive constructs,
we will see how they can be defined in §2.2.

2.2 Extensible Rows with Ad-hoc Polymorphism

Having discussed extensible rows, we now turn to ad-hoc polymorphism via type classes, exploring
their various forms of combination with row polymorphism.

Ad-hoc polymorphism a la type classes. Consider defining a function that compares whether
one value is greater than another. Using type classes [Wadler and Blott 1989], we can write:

compare :¥(a: *). Ord a= a — a — Bool

compare =Ax y.(x > y)

Here, (Ord a) is a type class constraint which requires that any instantiation of a must be an
instance of the Ord type class, which provides the (>) method. For example, we expect /nt and
String to be instances of Ord, but not functions, as directly comparing two functions is generally
challenging. For illustration purposes, we will use common type classes in our examples, including
Ord, Eq, etc. Type classes are typically implemented via dictionary-passing elaboration, where
evidence (called dictionaries) for type classes is explicitly propagated during a program elaboration
process which translates the source into a simpler target language without type classes.

Putting row and type class constraints together. By combining row polymorphism and ad-hoc
polymorphism, we can define useful ad-hoc polymorphic functions over row types such as:

compare_at :V(l:L) (a: %) (r:R).(Ord a,(l>a) <r) = [l| = IIr — Ilr — Bool
compare_at = Al x y. (x/l) > (y/])

4 Avoid confusing singleton types, i.e. types with a single inhabitant, with singleton rows, i.e. rows with a single field.
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Notably, the function incorporates both row constraints and type class constraints: the (Ord a)
constraint requires a to be an instance of Ord, while ({[> a) < r) requires r to contain (/> a). The
function then takes a first-class label [ of type | [|, and two records x and y of type 1 r, and returns
a Bool indicating whether x’s [ field is greater than y’s.

As an example, recall that alice has type [1(name» String, age> Int, weight > Float) (§2.1). Suppos-
ing Float is an instance of Ord, and bob is another record of the same type as alice, we can compare
alice and bob by their weights using:

compare_at weight alice bob

Combining type class constraints and row polymorphism. Now, let’s consider how we
may compare pets for equivalence. A straightforward approach involves defining a function that
compares two pets field by field:

eq_pet : 11 pet — Il pet — Bool
eq_pet = Ax y. (x/name) ==(y/name) && (x/age) ==(y/age) && (x/weight) ==(y/weight)

However, defining such a function for every record type can quickly become cumbersome. Instead,
we would prefer a general eq function that can compare fields within any given record type. This
presents challenges, especially with row polymorphism, where the exact fields within a row may
not be known. Moreover, we may expect some fields in a row to be comparable, but not others.

Our system supports ad-hoc polymorphism over row polymorphism. Specifically, assuming Eq is
a type class that provides the equality operator (==), we can define a generalized equality function
for row polymorphism with the following type:

eq:Y(r1r:R).(r1 < r, AllEqrT) = |r1] = IIr — Ilr — Bool

Here, the constraint (r7 < r) indicates that r contains r1. Additionally, the constraint (All Eq rT)
requires all fields within r7 to be instances of Eq. The function then receives an argument of type
r1], two records of type I1r, and returns a Bool. As an example:

eqp {name, age} alice bob

compares alice and bob based on their names and ages, but not their weights.

This form of constraint, (All Eq r1), is novel in our system, allowing us to express type class con-
straints over a polymorphic row. This constraint is satisfiable when all fields within r7 individually
satisfy Eq, thus allowing us to define functions polymorphic over rows where a specific property
holds across all fields, as exemplified by eqy;. It is crucial to distinguish between a constraint like
(All C r) and a constraint like C (II r). The former is derived automatically from individual
C instances for each field in r, a process that becomes evident during program elaboration. In
contrast, the latter represents a single type class instance for the type Il r. For instance, if Ord is
defined across r using (All Ord r), many different ordering functions can be implemented—such as
component-wise, lexicographical, or those based on specific distance metrics. Conversely, Ord (I1r)
would provide only a single, monolithic ordering definition.

Row constraints and commutativity. We have provided the type signature of eq; now, let’s
try to define it. As a first step, we can introduce a primitive that lifts a function (e.g. (==)) from
operating on a type to operating on all fields within a row (e.g. r7), accumulating the results.
However, before we introduce the primitive, a question is immediately raised: for a given row r,
what order should we use to apply the function to its fields? While in the case of Eq, the order may
not matter, since equivalence comparisons are order-independent, consider a print function below:

print :Y(r: R). (All Show r) = 11 r — String
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This function prints a record, where all fields in row r are instances of the Show type class. For
printing records, establishing a fixed order and thus deterministic behaviour would be valuable.

To this end, our system supports explicit commutativity annotations. Specifically, the type system
incorporates commutativity ¢ and non-commutativity n as types with a kind U. While rows are
easier to work with when handled commutatively, since they are considered equivalent up to
reordering, rows explicitly carry ordering information when treated as non-commutative.’

We then generalize row constraints by incorporating these commutativity annotations. For
example, the following holds, where row combination is commutative:

namer String) O, (age> Int, weight > Float) ~ (weight > Float, name» String, age> Int

while the following does not, as non-commutative combination requires name to appear before
both age and weight, and age to appear before weight:

namer String) ©,(age> Int, weight > Float) ~ (weight > Float, name> String, age> Int

Notably, non-commutative containment does not require the contained row to be a continuous
subset of the larger one, meaning some non-commutative containments cannot be expressed with
a single non-commutative concatenation. For example, the following holds:

name > String, weight > Float) <,(name> String, age> Int, weight > Float

while the following does not, since the entries in the contained row must appear in the same order
as they do in the larger one:

ager Int, name» String) <, (namer String, age> Int, weight > Float

Moreover, records, as well as variants, can also carry explicit commutativity annotations. Since we
incorporate commutativities as types, we can express a commutativity-polymorphic function:

splitName :V(a: ) (r r1:R) (p:U). ({name>a) Op ri~r) = 11, r — (a,11,r1)

This function requires that concatenating (name> a) and r1, as non-commutative rows, yields r.
Therefore, if y is instantiated to ¢ (commutative), commutativity can automatically rearrange the
record to bring name to the front. On the other hand, if y is instantiated to n (non-commutative),
this function only applies when name is precisely the first field in the record.

Furthermore, we consider non-commutative records (or variants, respectively) as subtypes of
commutative ones. Intuitively, non-commutative records carry more information due to the inherent
ordering between fields, and this additional information can be “forgotten” through subtyping. To
our knowledge, our system is the first extensible row type system to feature both the commutativity
hierarchy and polymorphism over commutativity.

Lastly, we note that first-class rows always have their orders fixed. For instance, | (name > String,
age> Int)| denotes I1,,(name> Unit, age> Unit). This fixed ordering often aligns with the intended
use of first-class rows, which can also be made commutative through subtyping.

Folding over rows. We are now ready to introduce our operator ind (short for “induction”),
which intuitively takes a base value and folds over a row’s entries. Using ind, we define eqy; as
follows:

eq:Y(r1r:R).(r1 < r, All EqrT) = |r1] = Ilcr — Ilcr — Bool

eqq =A(w:[r1]) x y.ind (Aa:R. Bool) r1 (Al acc. acc && (x/l==y/[l)) True

S Alternatively, instead of using annotations on the type level, we may track commutativity in the kind of the row, which
would allow folding to be limited to non-commutative rows. However, that would then require a non-commutative row

even when the ordering does not matter. Also, commutativity polymorphism would likely require kind polymorphism, as
the row kind would depend on commutativity.
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Note that the function takes a w of type |r1| and two records of type I, r, returning a Bool.
Commutativity polymorphism is unnecessary here since row types do not appear in the output,
so the function can still be used with non-commutative inputs via subtyping. The heavy lifting is
performed by ind, which takes four arguments in the form ind (Aa:R.t) r el e2. Here, (Aa: R. 1) is
a type-level function, r is a row type of kind R, e7 is the folding function, and e2 is the initial value,
with the following types:®

el:Y(r1r2r3:R) ([:L) (b:%).(r1 Op{l>b)~r2,r2 ©p r3~r) = |l| > t[ri/a] — t[r2/a]
e2:t[{)/a]

At each step, eTreceives a label | (|, as well as the accumulated value of type t [ r1/a] (where [r1/a]
denotes type substitution). It then returns a new value of type t [r2/a], where r2 is the result of
concatenating r7and ([~ b). The second constraint states that r2 and r3 concatenate to r, so r3
contains the entries in r which have not yet been processed. Notably, we allow the type ¢t to depend
on the type of the row that has been folded. In the case of eq, t is simply Bool; we will explore
examples where this substitution proves useful later. Thus, e2 as the initial value has type t [ ()/a],
where a is substituted by the empty row. Moreover, the row constraints in e are non-commutative.
This means that once r is fixed, ind will fold over rows in a predetermined order. Lastly, we remark
that the argument w is not used, as its primary purpose is to provide the singleton type | r7/, which
is a common pattern with singleton types. Note that w is explicitly annotated to allow the type
variable r7 to be passed as an argument to /nd. For the remainder of this section, we will often
omit type annotations and assume type variables from the signature are automatically brought
into scope; this behaviour is consistent with our formalism.
As another example, we define print as follows:

print :Y(r : R). (All Show r) = 11, r — String
print = Ax. ind (Ar: R. String) r
(Al acc.if acc=="" then show (x/l) else acc+", "+ show (x/l)) ""

Here, print takes a non-commutative record I, r, and provides ind with the order of r, a function
that accumulates the strings, and an empty string as the initial value.

The ind construct is highly expressive, allowing us to fold over not just records, but also variants.
For instance, we can define a general equality function eqy, for variants as follows:

eqs :V(r:R).AllEqr = >cr — >.r — Bool
eqy = ind (Aa:R.>ca— >.r — Bool) r
(Al acc. acc V (Ax. (Ay. False) V (Ay.x/l==y/[l) V (Ay. False))) (Ax y. True)

Here, we construct a function that compares x with y by folding over all possible cases of x. At
each step, (Aa: R.>. a — . r — Bool) constructs a function. This function takes cases of x
corresponding to the subrow >, a, along with y of type > r, and returns a Bool. The initial value
corresponds to when x is an empty variant, which should never occur, so it simply returns True.
The folding function, at each step, takes a label [ and the accumulated function acc, and extends
the function to handle the case when x is [. The body is another function of type >. r — Bool.
The inner function is also composed using (V): it returns (x/[==y/[) when y is also [, and False
otherwise. Intuitively, the final result is a function with nested matches: first on x, and then on y.
The function returns True only if x and y have the same label, and that label maps to equivalent
values.

Lastly, we note that commutative records or variants can be made non-commutative using ind.
In particular, we define order r which simply expands to the following definitions:

*With higher kinds, r7, r2, r3 will all be of kind R¥ for some k; see §3 for the complete typing rules.
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Extensible Data Types with Ad-Hoc Polymorphism 20:9

(order r) : 1ler = 11, r 2 Ax.ind (Aa:R.11,a) r (Al acc. acc+{l>x/1}) {}
(orders, r) = Scr — Spr 2 ind (Aa:R.2,a) r (Al acc. acc V (Ax. [ L[> x/1])) (Ax. x)

Notably, these functions must be used with care: the r parameter should be fixed, e.g. through its
occurrence in a non-commutative record, to ensure that it can be instantiated deterministically.

Now that we have covered type classes over simple types, we turn our focus to type classes over
type constructors. Before that, we need type-level lifting.

Mapping, lifting, and higher kinds. Consider a row (namer String, age> Int). Suppose we
would like to apply Maybe to each field, effectively turning each field into a maybe value: name
maps to type Maybe String, and age maps to type Maybe Int.

We provide an explicit constructor, called Lift, which acts as a type-level mapping [Chlipala 2010;
Hubers and Morris 2023]. For example, Lift Maybe (namer String, age~ Int)” returns (name> Maybe
String, age> Maybe Int). We can implement a function with such a type as:

lift_maybe:V(r:R) (u:U).11,r — 11, (Lift Maybe r)
lift_ maybe = Ax. ind (Aa:R.T1, (Lift Maybe a)) r (Al acc. acc+{l> Just (x/D)}) {}

lift_maybe { name~ “alice”, age>2} -- {name~ Just“alice”, age> Just 2}

While we have primarily discussed rows with fields of kind x so far, the Lift operator also makes
it useful to support higher-kinded rows. Specifically, given an /nt and a higher-kinded row:

stack > List, optional > Maybe) : R*~*
applying Lift (Aa. a Int)(stack > List, optional > Maybe) yields (stack > List Int, optional > Maybe Int).
There are two notable things. First, the row’s fields are of kind x — x. We denote the kind of
such a row as R*~*. In other words, the kind R now explicitly carries a kind annotation; we often
omit this annotation when it can be inferred from the context. Second, (Aa. a Int) is a type-level
function®, which can be fully annotated as (Aa: * — *. a Int). More generally, Lift takes a type
function of kind k; — k, a row of kind Rk and returns a row of kind R*2.
We are now ready to define the first-class row operator | r| (§2.1). The type-level operator | r
can be expressed as [1,, (Lift (Aa. Unit) r). Similarly, we can define a corresponding term-level
operator that applies to non-commutative records and turns each field into a ().’

Functors and monads. We now present the definition of fmap, which maps a function f over a
record whose fields are types where the type constructors are functors:

Sfmapy :V(r:R*>*) (a b: %) (p:U). (All Functor r)
= (a— b) = I, (Lift (Ac.c a) r) — 11, (Lift (Ac.c b) r)
Sfmapy = Af x.ind (Aa.T1, (Lift (Ac.c b) @)) r (Al acc. acc+H{[> fmap f (x/D}) {}

Here, r is a row of kind * — . The input record x has type 11, (Lift (Ac. c a) r), meaning each
field’s type is a field from r applied to a. The resulting record’s fields are then the corresponding
fields from r applied to b. The definition simply uses ind to apply fmap f to each field.

Similarly, we can define fmapy, that maps over a variant:

fmaps :V(r:R*7*) (a b: %) (u:U). (All Functor r)

= (a— b) = 2, (Lift (Ac.c a) r) — >, (Lift (Ac.c b) r)
"We could make the lifting operation implicit, writing Maybe (namer String, age~ Int) directly [Hubers and Morris 2023].
However, we choose to keep lifting explicit for clarity as well as consistency with other constructs like ind.

8Similarly, Maybe can be eta-expanded to Aa. Maybe a.
9We can define the term-level operator A(x : I1,,r). ind (11,, (Lift (Aa. Unit))) r (Al acc. acc+{l>()}) {}.
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Sfmaps = Af x.ind (Ad. >, (Lift (Ac.c a) d) — 2, (Lift (Ac.c b) d))
r (Al acc. acc vV (Ay. [l>fmap f (y/D])) (Ay.y) x

Lastly, let us consider monads as another example, here focusing on their definitions for records.

returng : Y(r: R*=*) (a: %). (All Monad r) = a — 11, (Lift (Ab. b a) r)
returny; = Ax. ind (Ac. 1. (Lift (Ab. b a) ¢)) r (Al acc. acc +{l> return x}) {}

The returny function takes a value x of type a, and constructs a record where each field maps to
(return x), where r : R*~* and all its fields are Monad instances. As examples, we have:

r £ returny 2 : 11, (maybe> Maybe Int, list> List Int) -- { maybe> Just 2, list>[2]}
fmapy (+1) r - {maybe> Just 3, list>[3] }
The definition of bindy is given as follows, where (>>=) is the bind operator of Monad:

bindy :V(r:R*>*) (a b: %) (u:U). (All Monad r)
= I1, (Lift (Ac.c @) r) — 11, (Lift (Ac.a — c b) r) — 11, (Lift (Ac.c b) r)
bindy = Ax f.ind (Aa.11, (Lift (Ac. ¢ b) @)) r (Al acc. acc+{1> ((x/1) >=(f/D)}) {}

Unlifting row types. We have seen how lift_maybe converts a record of values into a record of
Maybe values. Now, consider a reverse operator that converts a record of Maybe values back into a
record of concrete values. This is not always possible though, since if a field maps to Nothing, we
simply cannot recover a value of its original type. Therefore, we instead consider a function that
takes a list of records with Maybe values, filters out entries that contain Nothing in one of their
fields, and then returns a list containing only the remaining records with unwrapped values:

unlift_ maybe:V(r:R) (p:U). List (I, (Lift Maybe r)) — List (I1,r)

unlift_ maybe = Ax. map (Ay.ind _ _ (Al acc. acc +{!l> fromjust y/l}) {}) $ filter complete x
complete :¥(r:R) (p:U). (11, (Lift Maybe r)) — Bool

complete = Ay. ind (Aa. Bool) r (Al acc. acc && isjust (y /1)) True

Here, complete checks if a record contains Nothing in any of its fields. After filtering out these
records, unlift_maybe maps over the list, applying ind to extract the field values from their Just wrap-
per.

However, unlift maybe requires a record to contain Maybe values in all of its fields. More
commonly, only some fields may have missing data, while others are guaranteed to be present. For
example, we may always expect a pet to have a name, but its weight information could be missing.
Therefore, it can be useful to split rows into two parts: those with Maybe fields and those without.
This way, unlift_maybe can be applied specifically to the fields containing Maybe values.

To this end, our system introduces an additional constraint of the form Split (Aa: k.t) r1r2r.
Specifically, a Split (Aa:k. t) r1r2 r constraint looks at the types of r’s fields. If a field’s type matches
t after substituting a with some type t’, then the field mapping to t’ is placed in r1. Otherwise the
original field is placed in r2. As an example, we have:

Split Maybe (weight > Float) (name» String) (name> String, weight> Maybe Float

Notice that first row contains (weight > Float), instead of (weight > Maybe Float). In other words,
Split (Aa: k. t) r1r2 rimplies ((Lift (Aa: k. t) r1) © r2~r), rather than (r1© r2~r).

This allows us to define a generalized version of unlift_maybe:
unlift_maybe’:VY(r r1r2r’:R) (u:U). (Split Maybe r1r2 r,r1 ©. r2~r’)

= List (IT,r) — List (T1,r)
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The constraint Split Maybe r1 r2 r splits r, according to whether the field’s type matches Maybe,
into r7 and r2. The function then takes a list of the original record type 11, r, and produces a list of
type 1, r’. For example:

pets = [{ name® “alice”, weight > Just 2.4}, { name> “bob”, weight » Nothing}
, { name > “carol”, weight > Just 3.6} |

unlift_maybe’ pets -- [ { name> “alice”, weight > 2.4}, { name» “carol”, weight>3.6} ]

The Split constraint differs from the All constraint in a few key ways. All C r takes a constraint
C and requires all fields in r to satisfy it. In contrast, Split (Aa: k. t) r1r2 r takes a type abstraction,
and splits r based on its type information. In languages with expressive type systems, where type
equivalence can be expressed as constraints, we could potentially express Split (Aa: k.t) rir2r
as (Lift (Aa:k.t) r1 ©, r2~r),(All (Ac.P t.subst a t' t==c) r2), assuming (subst a t’ t)
substitutes a for t’ in t, and (==) denotes type-level equivalence. Notably, Split also conveys
negative information, since r2 must not match t.

We can define the corresponding split operator, with which we define unlift_maybe’:

splitg ¢ :¥(r r1r2:R). Split ¢ r1r2 r = 1l.r — {match> 11, (Lift ¢ r1), rest>11.r2}
2 (Ar.{match>(r: 1. (Lift ¢ r1)), rest>(r:11.r2)})
unlift_maybe’ r = let r’ = splityy Maybe r in (unlift_maybe (r’/ match)) +(r’/rest)

3 Declarative Type System

This section presents the type system of the source calculus 477, which incorporates row polymor-
phism and type classes. The dynamic semantics will be defined later in §5.

3.1 Syntax

Fig. 1 presents the syntax of /1?. A program pgm consists of a sequence of class and instance
declarations, followed by a term. A type class declaration defines a type class for types of kind «,
with the overline notation denoting that any number of superclasses TC; are allowed. For simplicity,
we assume each type class has a single method m, though the system could easily be extended.
Instances can be qualified with any number of prerequisite constraints ;.

Terms M include term variables x, type class methods m, lambdas A x. M, applications M N, let
expressions let x : c = M in N, expressions with type annotations M : o, first-class labels ¢, singleton
products {M> N} and sums [M» N], unlabel operations M/N, projection prj M'°, concatenation
M++N, injection inj M, elimination M V N, and ind expressions.

Types are stratified: type schemes ¢ include polymorphic types V a: k. o and qualified types y.
Qualified types y include types ¥ = y with a constraint i, and monotypes 7.

Monotypes 7 represent types across various kinds. For clarity, we often use specific symbols
to informally refer to types of particular kinds: we write ¢ for type-level functions, p for rows,
for constraints, ¢ for labels, and p for commutativities. Monotypes include type variables a, type
applications ¢ 7, function types 7y — 71, labels ¢, singleton label types | £], commutativities u, and

rows (&; > 7;). Records or variants are denoted by Z, p, using IT or X, respectively. The Z notation is
associated with commutativity information p, which can be polymorphic. A concrete commutativity
u is either ¢ for commutative or 1 for non-commutative. The Lift operation applies a type-level
function over rows. For simplicity, we do not include general type-level lambdas, avoiding the

10The formalism includes explicit projection and injection, following Morris and McKinna [2019].
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pgm = classTC;a; = TCa:xwhere{m:c};pgm | program
instance% = TC v where {m=M}; pgm | M

MN == x|m|Ax.M|MN |letx:c=MinN |M:c || term
{M»>N}| [M>N] | M/N |ptjM | M+HN | injM | MV N |
ind(la:k.7)pMN
o == VYa:k.ol|y type scheme
y = y=>ylr qualified type
nopbp = aldrlnon ] ul&en) [Eup monotype
Lift (Aa:x.7)p | po <, 1| po@upri~pz2 | TCT |
All (Aa:k.7) p | Split (Aa:k.7) po p1 p2
u = ¢|n commutativity
2 o= 1|2 prod or sum
I' == e|la:x|L,x:0|L¢ type environment
Ic = €|l (TCai=TCa:xk)>m:co class environment
I} = €|, (Va k.4 =TCr) instance environment
K = *|kg—k |[RFJC|L|U kind
Fig. 1. Syntax
ining
FLOOR ROW _ o
LABEL [o;THEL comm IesTREG:L rrds IosTrrmiix
Ic;THE:L Io;THLE] i Ie;Tru:U Io;TH{(E v ) R
PRODORSUM LIFT
Te;Thp:U Ic;THp:R* TesT,a:kp 70k Tce;THp:R¥
Ie;THE, pik Io;THLift (Aa:kg.7) p: R
CONTAIN CONCAT TC
Ie;Thp:U Te;THp:U  TesTkpg:RE (TC,a=TCa:x)>m:celc
TesTFpo:R* Ie;Thpp R Ie;Trpr:RE Ie;Tkpy: RS Ie;ThT:k
Ie;Thpog, p1:C TesTFpo ©up1~p2:C Ie;THTCr:C
ALL SPLIT
Ie;T,a:k+y:C Io;THp:R® Ie;TH(Lift (Aa:k.7) po) O p1~p2:C
Te;THAIL(Aa:k.¢) p:C Ie;THSplit (Aa:k.7) po p1 p2:C
Fig. 2. Kinding

need to handle them in arbitrary positions.!! Monotypes also include several forms of constraints:
containment < and concatenation ® constraints which are also associated with commutativities,
type class constraints TC 7, All constraints, and Split constraints.

Moreover, we have three environments: a type environment I maps type variables to their kinds
and term variables to their types, as well as keeping track of constraints. A class environment I'c
stores type class declarations, and an instance environment I stores type class instance declarations.

Lastly, we employ a kind system to distinguish between types: kinds x include * for the base kind,
Ko > k1 for type-level functions and type constructors, R* for rows, C for constraints, L for labels,
and U for commutativities. Fig. 2 presents selected kinding rules related to rows and constraints;
most of them are straightforward. Rule Row checks the labels and their types. Here, 7 represents

Type inference for type-level lambdas is known to be generally undecidable; we leave type inference for future work. We
also believe solving Split constraints in the presence of type-level lambdas would introduce similar challenges.
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a row theory [Morris and McKinna 2019] which allows a language to be defined generically with
respect to various aspects of rows. More concretely, we rely on the row theory to specify:

(1) a validity check for labels within a row (e.g. Row in Fig. 2);
(2) a predicate which can restrict reordering for commutative rows (e.g. comM in Fig. 4); and
(3) a constraint solver (e.g. QUALE in Fig. 3), allowing for varied interpretations of row constraints.

For rule PRODORSUM, the row must have kind R* since its entries describe terms within products
or variants. In contrast, CONTAIN and coNcAT allow rows of any kind. Lastly, rule spLIT checks
Split simply by checking a concatenation constraint, as they share the same kinding requirements.

3.2 Typing

Fig. 3 presents the term typing rules. Program typing rules (along with their elaborations) are
omitted; these rules are standard, simply extending the class and instance environments, and can
be found in the appendix. The judgement I};Io; T + M : o reads that under contexts Iy, I and T,
term M has type o. Readers are advised to disregard any ~» blue and highlighted parts, as these
are relevant to the elaboration process that will be explained in §5. The first six rules are standard.
Rule METHOD states that a type class method can be invoked whenever the corresponding class
constraint can be solved (§3.3).

Rule guall adds qualifiers to types by putting the constraint in the environment (with the ~ x
part needed for elaboration) to type-check the term, while QUALE eliminates them by invoking
the row theory’s constraint solving relation. Similarly, scHEMEI generalizes the term’s type, while
scHEMEE instantiates polymorphic types.

In LABEL, first-class labels are assigned a singleton type of the same label. Rules PrRoD and sum
create singletons of their respective row types, requiring the label term to have a singleton label
type. UNLABEL applies to both singleton products and sums, when the label in the type of N matches
the label in the row of M’s type. Rules PR}, CONCAT, INJ, and ELIM all require the corresponding row
constraints to hold. Rule suB allows terms to be implicitly cast to a supertype, using the subtyping
judgement. Finally, IND precisely specifies the ind primitive, as described in §2.2.

Subtyping. Fig. 4 presents selected subtyping rules. The subtyping judgement I'c; '+ 0y <: oy
reads that under the contexts I'- and I', the type oy is a subtype of oy. For clarity, we also informally
write I'c; T'; ¥ = ¢ for subtyping between constraints. The subtyping relation supports a partial
ordering between commutativity annotations, type equivalence between commutative rows, and
type equivalence for Lift types and their applied forms. Relations between rows, however, are
handled by constraint solving, as their interpretation can vary depending on the specific row theory.

Subtyping is reflexive and transitive, and is co-variant over both product and sum constructors.
Thus, rule PRODORSUM simply checks the subtyping relation between the components. Rules
PRODORSUMROW, CONTAIN, and ALL relate equivalent rows inside constructors. Row equivalence
Ic; T+ po =4 p1 is reflexive, symmetrical, and transitive. It is parameterized by the commutativity
1, which is passed in from subtyping. Row equivalence relates commutative rows, as in rule
coMM (where the row permutation is parameterized by the row theory, and [:n] denotes the natural
numbers up to, but not including n), as well as lifts of concrete rows regardless of the commutativity,
as in rules LIFTL and LIFTR.

Rule DECAY allows a record or variant with commutativity p to be used as one with commutativity
11, provided g < pq. Rule NEVER converts an empty sum, which has no inhabitants, to any other
well-formed type, which is especially handy for writing initial values when using ind with sums.

As previously discussed, commutativity has a partial ordering, denoted as yo < py, which is
reflexive. Non-commutativity n is the strongest form, as it retains row order information. This
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ITesTEM:io~ E (Typing And Elaboration)
VAR METHOD
x:0€l (TCla~Al=TCa:x)>m:0~~A€lc I;TesTEFTCT~E
IpTe;Thx:o~x I;Ic;Trm:o[t/a]l ~m E
LAM APP
I;Ig; Tx:iob M1y~ E IesThgix~m A I TeEM:itg—> 1y~ F I;Ic;THN:gg~~ E
I T THFAX. Mg > 1y~ Ax A E I;;Te;TFMN 1y~ FE
LET ANNOT
I;Te; THFM:og~~ E IesThRop ik~ A I;Ie; T, x:00 - N:oy~> F I TEM:o~~E
ITe;Trletx:op=MinN:op~ (Ax: A F)E I Te Moo~ E
QuALI QUALE SCHEMEI
Io;THY:C~ A I; I TEry~E I;Igla:kk Mo~ E
I TesT, g ~>xk-M:y~~>E InTesTEM:y =y~ F Fr~ K
Il TEMy =y~ Ax:AE InTe; TeM:iy~FE Il TeEM:VYa:k.o~ANa: K. E
SCHEMEE
I;TesTEM:Va:k.o~ E PROD
Te;ThT ik~ A LABEL I o THM: €] Il TEFN:T~E
ITe;TeM:o[t/a]l ~ E[A] Il TRE: 2]~ () I;TesTH{M> N} : I, (E> 1) ~~ (E)
UNLABEL
InTesTEM:E (Ep Ty~ B I;TesTHN: €]
m E ==1II
SUM TosTRT ik~ A If = ) Ellx:A x Soy
TiTe;TEM:[E]  TpTesTEN iz~ E caseE{Ax:A.x} E=
I;Te;TH[Me N2 (Ep Ty~ 10 E Il THFM/N:iT~~ F
PR] CONCAT
FI;Fc;FFM:HupoWF I T THM:IL, po~ Ey InIoTHN I, py~ )
IplesTErpis, po~ b I T T Eg po Oy pr~ pa ~ F
ITe; TrprjM:II, py~~ (7m0 F) [Aa:x.al E I;Te; T e MAN I, po ~ (g F) [Aa: k. al E) E
INJ
I TesTEM 3, po~~ E FI;TC;I‘):rrpogyple
T TRing M2, py~ (m F) [Aa:k.al E
ELIM SUB
r[;rc;FI-M:(Zﬂpo)—)TWE() FI;FC;FFN:(Z”pl)Herl Il TEM:og~~ E
ITesTEgpo©upr~p2~F Ie;ThT:ix A Ie;Trog<:0p~ F
I‘I;Fc;rl-MVN:(Z#pz)—)TW((]T] F) [Aa:*.a] [A] Ey) E; I;;TesTeM:oyp~FE
IND

Io;THp:R¥ Io;T,a: R Frik~s A
I TesT,ar:Lay :k, ap a; an :RXF M:a, Oy {ar> a;) ~ a;, a; Oy an~pz|_alj—>r[a‘,,/a] —1la;/a] ~E
InTe;TEN 7 [()/a] ~ E
FKs K I;Te;TEqInd p ~s F E=(F[Aa:LX. Al (Aaj: % a;:K, apa; a, : LX . Ey)) E;

I;Tc;Trind (Aa:R.7) pMN:7[p/a] ~ E
Fig. 3. Term typing (with elaboration detailed in §5)

information can be discarded, allowing it to “decay” into any other commutativity type. Conversely,
commutativity ¢ is the weakest form, as it carries no additional information. This ordering is partial
because there is no relationship between distinct polymorphic commutativity type variables. Recall
that the typing rules ProD, suMm, and UNLABEL (Fig. 3) use concrete commutativities. This partial
ordering allows us to apply those rules to values with other forms of commutativity without any
loss of expressiveness.
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TeiTrop <01 2T T F iy (Subtyping)

PRODORSUM—’ PRODORSUMROW DECAY

IesThn < IesTFpo =y p1 Te;THE, pix
I TRE, (Givm) ix Io;THIT, po: % Te;Thp:U o< i
IoiTRE (&> 1) < B, (&GivT)) Te;THIT, po <2 Ey py IosTHE, p<Eyp
CONTAIN ALL
NEVER rc;TFp}E.yrpz chljkpl =pP3 IesTk po = p1
ToTho:x cilkpos, pi:C Te:TrAI(Aa:k.¢) po:C
Ie;TEIE () <o FC§F§POS#I71’:PZS#P3 Ie;T; Al (Aa:k.¢) poE AL (Aa:k.¢) py
IesTrpo=,p1 (Row Equivalence)
COMM
TRANS

7 p permutes [:n] for &

REFL Ic;Tkpo:R* ——ie[n], .
Ie;TFp:R¥ TeiTrpo=up1 TesTHpr=,ps IesTH{Giem )R
—i€[:n] —i€p
Ie;Thp=p Ice;TFpo =y p2 IesTH{G e 1 Y= (& )
LIFTL LIFTR
Io;THLift (Aa: k. 7°) (&> 1;) : R Io;THLift (Aa: k. T') (&> 1;) : R
Ie;TrLift (Aa:xo. ') (Ev i) =, (&> 7 [7i/a]) Ie;TH(E o' [1i/a]) =, Lift (Aa:ko. 7') (&> 1)
(Commutativity Partial Ordering)
peop nop pooc

Fig. 4. Subtyping

3.3 Constraint Solving

Up to this point, we have left the row theory abstract (§3.1). To illustrate constraint solving (and
subsequent elaboration in §5.2), we provide an example interpretation 75 of simple rows, similar to
those from Morris and McKinna [2019]. For this row theory, the label check in the Row kinding
rule is instantiated as a uniqueness check, and row permutations in the comm row equivalence rule
are unrestricted.!? Fig. 5 presents selected rules for the constraint solving relation of 7;. The first
rule LocaL simply solves constraints by using those already available in the context.

Row constraints. The next few rules are for rows. Rule coNTAINTRANS states that row con-
tainment is transitive. Rule cONTAINDECAY uses the commutativity partial ordering to solve row
containment constraints, deriving weaker commutativities from stronger ones.

Rule cONTAINCONCAT permits the combination of multiple contained (possibly non-adjacent)
rows into a larger containment constraint. Rule concATCONCRETE is the only rule for solving
concrete, non-commutative rows constraints; the constraint well-kindedness ensures the uniqueness
of labels. The non-commutativity requires the combined row to be made up of all entries of the first
row in order, followed by all entries of the second, meaning no “interleaving” is allowed. However,
elements can be interleaved in containment constraints via CONTAINCONCAT.

Rule concATSWAP states that commutative row combination is symmetric. Rule concATDECAY,
similarly to rule conTAINDECAY, allows containment constraints with stronger commutativity to
prove those with weaker commutativity. Lastly, containment can also be derived from concatenation
using rules coNcATCONTAINL and coNcATCONTAINR.

121t is possible to instantiate 7~ with other row theories, such as scoped rows [Berthomieu and De Sagazan 1995; Leijen 2005].
In that case, rule Row allows duplicate labels, and comm permits permutations between non-duplicate labels.
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IiTeiTEg ¢ (Constraint Solving)

Local Row
CONTAINDECAY
LOCAL CONTAINTRANS I1;Ie; T =z po Sy P1
yeT el g pos,pr InleTEg pis, p o~ TesTrp:U
l“I;Fc;I“)qul// FI;FC;F):r];pO S‘upg rI;rC;r’:’];,DO Sm P1
CONTAINCONCAT

I1;Te; T E7; po O p1 ~ p2 I Te; T Ea; p3 Oy pa~ ps IpTesT g po <, ps IpTesT g pr s, pa

I;TesT Eg; p2 <, Ps

CONCATCONCRETE
———iclm] ——jeln] CONCATSWAP
Te;TH{E 13 VT :R*
: [ 1@1 l _§,[ N = [im] jeln] el PO e
—i€[:m - J€ln ~——ielim] ———jeln
InleTEg Gvn Yo, )~ Givn L8t ) I I T E7; p1Oc po~ p2
CONCATDECAY
I1;Tes T Eg; po Opy p1~ P2 CcONCATCONTAINL cONCATCONTAINR
Ho < 1 Ie;Trp:U I1;Te; T F75 po Op p1 ~ p2 I1;Te; T F7; po O p1 ~ p2
I1;Te; T Bz po Opy 1~ P2 I1;Te; T Fa; po S, P2 I Te; TRy po S, P2
Lift
o LIFTCONTAIN

FI;FC;Fﬁquogupl I‘C;kao:R"" Ie;T,a:koFT:Ky

I1; Ie; T gz (Lift (Aa: k. 7) po) 5, (Lift (Aa:ko.7) p1)
LIFTCONCAT
I;Te;T =5 po Ou p1 ~ p2 Ie;TFpg : R Ie;T,a:ko b7k

I Tes T g (Lift (Aa:xo. 7) po) Oy (Lift (Aa:xo. 1) p1) ~ (Lift (A a: k. ) p2)

Type classes

TCINsT o TCSUPER
(V@K g =TCr) el (T}ale[‘n]ﬁTCa:K)i—)m:aerc

IesTroiike TnlosTFg ¢yle /ak] [Te;TE TCr i€ [in]
FI;Fc;F):r]; TCT[T;C/ak] FI;FC;FW; TCL{T
All
'ALLEMPTY ALLSINGLETONINTRO
Ie;T,a:k+y:C I Te; T Eg ¢ [t/a] Ie;T,a:xk+y:C Ie;sTHE:L Ie;Trrik
I;To; TR All(Aa:k.¢) ) I;To T Eq All(Aa:k.¢) (Ev 1)
ALLSINGLETONELIM ALLCONTAIN
rj;rc;r)zqull(/lalK.l#) <§I>T> FI;FC;F):(;;/)O scpl FI;I“C;F):r;;All (Aa:K. l,//)pl
rj;l—‘c;r’:r];l//[’l'/a] Fj;rc;r’:r];All(Aa:K.(//)po
ALLCONCAT

IIoTEr poOcpr~pe  InlosTEZ All(Aa:k. ) py Inle;TEg All(Aa:k.¢) py
IIo;TE All(Aa:k.¢) pa

Split
SPLITEMPTY SPLITSINGLETONMATCH
IesT,a:kFT1:i% IesT,a:kbk1p:% Ie;ThT ik Ie;THE:L
I Te; T g Split (Aa:k.7) ) () () I1;Te; T =g Split (A a: k. 7o) (€» 1) () (€> 10 [11/a] )
SPLITSINGLETONREST
B0 IoiTHn <19 [12/al SPLITCONCAT
Ie;T,a:kb19:% Te;Thrix Ie;THE:L I1;Te; T =g Split (Aa: k. 7) po p1 p2
I Tos T g Split (Aa: k. 9) ) (&> 1) (E>71) I Tos Ty (Lift (Aa: k. 7) po) Oc p1 ~ p2

Fig. 5. Constraint solving
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E,F = x|Ax:A.E|EF|Aa:K.E|E[A]|(E) | mnE | 1nE | case E {F;} term

V = Ax:A.E|Aa:K.E| (V) |1V value
ABC = a|la:K.A|AB|Va:K.A|A—B|{A}|A[B] |®A|aA type
K = *|K —K,|LK kind

A = e|MNa:K|Ax:A environment

Fig. 6. F&® syntax

Rules LirTCoNTAIN and LIFTCONCAT solve containment and concatenation constraints for lifted
rows by solving their unlifted forms. This also highlights the utility of allowing row constraints
over rows of arbitrary kinds.

Type classes, All, and Split. There are two rules for type class constraints. Rule TCINsT finds an
instance in the context, instantiates its type variables, and solves the prerequisites. Rule TCSUPER
solves a superclass when a subclass constraint can be solved.

We have five rules for the All constraint. Rule ALLEMPTY states that All is always satisfied for
empty rows. Rules ALLSINGLETONINTRO and ALLSINGLETONELIM convert between All applied to
singleton rows and the corresponding constraint on the type itself. ALLSINGLETONELIM is particularly
useful within the step function of ind expressions. Rule ALLCONTAIN solves All over smaller rows
using All over larger rows. Finally, rule ALLCoNcAT solves All constraints over larger rows using
those over smaller rows. This rule is often used at the top level when polymorphic functions are
instantiated and we need to solve constraints for concrete rows.

The remaining rules are for Split. Rule spLITEMPTY applies when the row being split is empty.
Rules sPLITSINGLETONMATCH and sPLITSINGLETONREST handle cases where an entry either matches
or does not match the type lambda, respectively. While rule SPLITSINGLETONMATCH is straight-
forward, rule SPLITSINGLETONREST incorporates subtyping to ensure deterministic Split solving:
SPLITSINGLETONREST only applies when a type fails to match the type lambda, even through sub-
typing. Such a subtyping rule is not needed for spLITSINGLETONMATCH because such a check can be
handled by the suB typing rule if necessary to solve the constraint. Larger split constraints are solved
by combining smaller ones, with the corresponding rule provided in the appendix for space reasons.
Finally, rule spLITCONCAT states that Split implies the corresponding concatenation constraint.

Lastly, we remark that while the system incorporates numerous rules, the complexity is a
worthwhile tradeoff for the simplified type signatures it enables: many rules allows for the derivation
of weaker constraints from stronger ones, meaning programmers can specify only the most powerful
constraints in their type signatures, leading to significantly more readable types.

4 Target Calculus

This section presents F&®, our target calculus. We present its semantics (§4.1), and prove its type
soundness (§4.2). F&® builds upon the F®® calculus [Morris and McKinna 2019], but extends it in
several significant aspects. First, while F®® is based on System F, F&® is built on System Fw by
incorporating type lambdas, type applications, and higher kinds. Second, we introduce first-class
type-level lists. This allows product and sum types to be constructed with type-level lists instead of
embedded entries or variants. Unlike rows, type lists are considerably simpler: they lack labels,
so there are no concerns about uniqueness, and they do not support containment, concatenation
constraints, or commutativity. Finally, we introduce type-level mappings, which are similar to Lift
in the source, and apply a type lambda over type-level lists.

Syntax. The syntax of F&® is presented in Fig. 6. Expressions E include variables x, lambdas
Ax:A.E, applications £ F, type abstractions A a : K. E, type applications £ | A|, products (E;) written
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(kinding)
LIST LISTAPP ) PROD SUM
ArA;:K AvA:K —K,  ArB:LS ArA:L* ArA:L*
Ar{A;}:1LK ArA[B]:LK Ar@A:* Ar@A:*
(typing)
PRODELIM S.UM[IN"]FRO Nepa SUMELIM
—i€]: €|: (S \ -
PRODINTRO AvE:® {A; l”‘} Jetn ie[n] / ArFE: @ {A;}
FA  AFE A jeln] AFA;:* AvrF:Aj—>B  ArB:x
AF(B):® (A7) Arr E:A, AvE:e (A ") ArcaseE{F,}: B
(Type Equivalence)
SYMM TRANS LISTAPPLIST
REFL ArA=B A+rA=B  ArB=C ArA:K - K
AFA=A ArB=A ArFA=C ArA[{B;}] ={AB;}
LISTAPPID LISTAPPCOMP LISTAPP
AFA:LE AFA; K — K, AFA = A, AFB; =B,
A+ (Aa:K.a)[A] =A ArAg[[A1 [B]] = (Aa:K;. Ay (A @) [ B] ArA;[Bi] =A;[B:]
E—F (Operational Semantics)
PRODINTRO PRODELIM PRODELIMINTRO SUMINTRO
E—E E—E jelmn] E—E
(V.E.F;)) — (V,E'.F;) mE—m E 7 <t —V, LE—s i, E
SUMELIML suMELIMR SUMELIMINTRO
E—E E—E j€[n]
case E {F;} —> case E’ {F;} caseV {? E, ]T,}» —> case V {? E/FT} caset; V {XT’“ vl }— ViV

Fig. 7. F2® semantics

with the tuple syntax, product projection 7, £, sum introduction 1, E, and elimination case £ (F;}.
Values V' are a subset of expressions.

Types A include variables ¢, type lambdas 1 a : K. A, applications A B, polymorphic types V a: K. A,
function types A — B, type-level lists {A;} and mappings A | B]|, product types @ A, and sum types
@ A. Kinds K include the base kind *, K, - K for mappings, and L" for type-level lists of kind K.
A typing context A maps type variables to their kinds, and term variables to their types.

4.1 Typing and Operational Semantics

Fig. 7 presents selected rules for F®, focusing on type-level lists, products, and sums; the complete
rules can be found in the appendix. For kinding A + A : K, rule L1sT requires all entries in a list to be
of kind K, and returns kind L”. In rule LisTAPP, A is a mapping from K, — K,, which takes B of
1" and returns L."*. Both rules ProD and sum require A to be of kind L.*.

For typing A+ E : A, most rules are self-explanatory. The judgement ensures that A is well-formed
(written + A), and the output type A has kind *. In rule PRODINTRO, the first hypothesis ensures the
context is well-formed, even if the product is empty. Similarly, in rule suMINTRO, the last hypothesis
ensures that the other cases of the sum being created have the required kind. The last hypothesis
for rule sumELIM similarly ensures the output is well-kinded, even when E is the empty sum.

The judgement A + A = B defines type equivalence, which is reflexive, symmetrical, and transitive.
Rule L1sTAPPLIST gives mapping its intended semantics by applying the function to each element
within a concrete list. Rules LisTAPPID and LisTAPPCoMmP correspond to the identity and composition
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laws for mappings. These two rules are particularly useful when the list is e.g. a type variable and
thus rule L1sTAPPLIST does not apply. We will revisit these rules when discussing elaboration (§5).
The operational semantics £ — £’ follow a call-by-value evaluation strategy. Rule PRODINTRO
evaluates product components left-to-right until all are values. Rules suMELIML and suMELIMR
evaluate the scrutinee, then the handlers in a similar way. The computational rules PRODELIMINTRO
and suMELIMINTRO perform projection and case matching on values. All type-level constructs,
including lists and mappings, are purely static and do not appear in the operational semantics.

4.2 Type Soundness

We demonstrate that FE® enjoys syntactic type soundness. The proofs are largely based on those
for System Fow [Pierce 2002], with the exception of the typing inversion and value cannonical form
lemmas, which are significantly more complex than in standard System Fow. These lemmas rely on
the property that it is impossible to establish equivalence between unrelated types. This is normally
established by defining a reduction relation for types, proving that the equivalence closure of this
relation corresponds to type equivalence, then proving confluence for the reduction relation.

Typically, a single-step parallel reduction relation is used, with confluence following from the
diamond property, but this turns out to be highly non-trivial in F¥®. As an example, consider parallel
reduction on A [ (Aa:x.a) [{B}]]. This type reduces to A [ {(1a:*.a) B}| via LisTAppLIsT. Al-
ternatively, it reduces to (La:x. A ((la:*.a)a)) | {B}] via istAppComp. The diamond property
claims that both reduction paths converge in one step, but this is not possible because the first
type reduces to {A B} (LisTAPPLIST, f§) or A [ {B}| (tisTArp, f), while the second type reduces to
{(La:*. Aa) B} (ListTAppLisT, f) or (La:*.Aa) [{B}] (ListArp, f).

Therefore, instead of using the parallel reduction approach, we define non-deterministic small-
step reduction semantics for types (provided in the appendix). We then apply Newman’s lemma [New-
man 1942] to conclude confluence from local confluence (Thm. 4.1) and strong normalization
(Thm. 4.2). For more detailed explanations of our proofs, we refer the reader to §6, the appendix,
and our artifact.

We first establish local confluence by induction:

Theorem 4.1 (Local Confluence). If A+ A— By, A\ A— B, A A: K, and + A\, then there exists
C such that A\+ By—* C and A+ B, —* C.

We then apply an argument based on logical relations [Skorstengaard 2019] to prove strong
normalization. The logical relation for closed types is defined as follows:

SN, (A) =ecrA: %k ASN(A)
SN[\‘ - K, (’\) =e+A:K;— K, AVB, SN[\] (B) = SN[\:(/;\ B)
SN «(A) = ek AL ASNgy, (A)AVA B ek A—"A"[B'| = 3C, SN (A C)

The first two cases are standard, as typically seen in logical relations for the lambda calculus [Girard
et al. 1989, Chapter 6]. The SN predicate (which appears in the * case) is strong normalization;
this means that there is no infinite reduction sequence for the type. The last case was the most
challenging to define, due to complicated interactions with the L1sTAppComp rule. Specifically, when
this rule is applied, it is often difficult to preserve the required induction hypotheses since various
useful properties (most importantly SNk ) cannot be inverted. The SN}J relation, paramterized by a
property P, states that all reduction paths of the type terminate, or encounter a concrete list whose
entries satisfy P:

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 20. Publication date: January 2026.



20:20 Matthew Toohey, Yanning Chen, Ara Jamalzadeh, and Ningning Xie

REFL STEP
P(A) VB, e+ A— B=SNp(5) VB, A#
SNE((4,)) SNE(A)

We establish that the logical relation implies strong normalization by induction on kinds:
Theorem 4.2 (Strong Normalization). IfSNy (A) then SN(A).

We prove that well-kinded types are in the logical relation. We lift the logical relations to open
terms, with § being the standard substitution of contexts. The judgment § F A means that § provides
a substitution for each type variable entry in the environment, and each substitution type satisfies
the same SNy predicate:

Theorem 4.3 (Fundamental Property). If 6 A and A+ A: K then SN (6 A).

Combining Thm. 4.2 and Thm. 4.3 establishes strong normalization for all well-kinded types, which
in turn allows us to prove confluence.
With all these, we prove type soundness of F&®:

Theorem 4.4 (Progress). Ifer E: A, then either E is a value, or there exists ' such that E —

Theorem 4.5 (Type Preservation). If A\rE: A and E— E’, then A+

5 Elaboration

This section presents the elaboration rules. Following elaboration of expressions, we cover four key
aspects of elaboration: dictionary-passing elaboration of type classes (§5.1), interpretation of row
constraints (§5.2), elaboration of ind (§5.3), and elaboration of subtyping and row equivalence (§5.4).
Finally, we prove that elaboration is sound (§5.5). As before, we use to denote terms.

Type-directed elaboration of expressions. Fig. 3 has presented the type-directed elaboration of
expressions. Rules VAR, LAM, and APP are straightforward, translating the source constructs into
their corresponding target terms. Rule ANNOT simply produces the elaboration of the expression,
as the target is always fully annotated.

Rules METHOD, QUALI, and QUALE handle type class constraints, and will be discussed in detail in
the next section (§5.1). Rules scHEMEI and scHEMEE introduce type abstractions and applications,
respectively. Rule LET translates let expressions into applied lambdas.

Notably, elaboration erases first-class labels, as demonstrated in rule LABEL, where a first-class
label is translated to a unit term. While labels are important for records and variants in the source
calculus, their corresponding information is replaced by constant indices for the target’s product
and sum terms. As a result, row commutativity inserts explicit conversions to ensure that the order
in elaborated product and sum terms consistently matches the order from the type (§5.4).

Rules proD and sum convert singleton record and variant terms into unlabelled product and sum
terms in the target. In rule UNLABEL, M must already have a singleton row type, meaning only one
element can be extracted. In these rules, the elaboration of the label is discarded.

Lastly, we explain rules Prj, CONCAT, INJ, and ELIM along with elaborations of constraint solving
in §5.2; rule suB with the elaboration of subtyping in §5.4; and finally, rule IND in §5.3.

Elaboration of types and constraints. Fig. 8, 9, and 10 present elaboration environments and
selected rules for type and kind elaboration respectively. These elaboration rules will be explained
throughout the remainder of this section as their corresponding parts are discussed.

Fig. 11 presents selected constraint solving rules with their elaboration, which we discuss in §5.1
through §5.3. The full set of elaboration rules is provided in the appendix.
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I' == e|la:x|Lx:0|T,¢~x type environment
Ic = €|l (TCai~A=TCa:k)>m:o~ A class environment
Ir = el|IL(VaK.¢i~x;=>TCr)~E; ] instance environment

Fig. 8. Elaboration environments

(Kinding And Elaboration)

™© ROW _ PROD
(TCla~Al=TCa:x)>m:0~A€l; Ic;THE:L ko & Ie;THp:U
Te;Thr:k~~ B Ie;ThT ik~ A Io;TRp:R s A
Ie;THTCT:C~ @ {A[B/al Al [B/al} ToiTH(Ee 1) iR~ {A;) IosTHID pix v @A
ALL
COMM Ie;T,a:k-:C A P~ K I;THp:R B
Ie;Tru: U~ @ {} Ie;TFALL(Aa:k.¢) p:C~~® ((La: K. A) | B])
CONTAIN

Ie;Trp:U Ie;TRpo : R~ Ay Io;THpp iR~ A bx~s K
TesThpo <, pr1:Cre @ (Var Ko x (®(a [Ai]) = ® (a]A]).YVa: K- *. (& (a[A])) = & (a[[A1])}

IND
Io;THp:RE~ A Fr~ K
Ie;T,ar:La;:x, apa; :R¥ - ap Oy (ar>a;) ~a;: C~» B Ic;T a0, :RFa; Ogap ~p:C~ B,
As=Va :ka;:K, apa; an :LI\.B/ =B, = (®&{}) = (amap) = am a;
Ie;THIndp:C~»Vay,: (LK > %). A, — (ap, {})) s anA
Fig. 9. Type elaboration
kK~ K (Kind Elaboration)
kK~ Ko F Ky~ K FK~ K

F o~ x F ko b Ky~ Ky K FRS s L FC~x FL~* FU~ %

Fig. 10. Kind elaboration

5.1 Dictionary-Passing Elaboration for Type Classes

We implement type classes using the dictionary-passing elaboration [Wadler and Blott 1989]. Intu-
itively, each type class corresponds to a data type whose entries represent its methods. Type class
instances then correspond to values of these data types (i.e. dictionaries), which are implemented
using product types in our target calculus. Throughout this work, we refer to the elaboration result
of constraint solving as evidence, since our constraint solver also handles row constraints.

The type elaboration rule Tc in Fig. 9 elaborates type classes to a tuple type. In the first hypothesis,
A represents the elaboration of the type of the class’s method o, and A’ are the elaborated types of
the superclasses. We substitute the type variable ¢ with the elaboration of z. Similarly, the constraint
kind C is elaborated to the base kind * in the target (Fig. 10).

As a result, in Fig. 3, terms with qualified types are elaborated into functions that take the
corresponding evidence arguments (rule QuaLl). Evidence arguments are automatically inserted
after they are resolved (rule QUALE), and if a type class constraint can be resolved, the corresponding
method can be accessed (rule METHOD).

Rule TCINsT in Fig. 11 handles type classes. This rule applies when a corresponding entry for the
required type class TC exists in the instance environment. In this rule, £ corresponds to TC’s method,
and ! corresponds to the evidence for TC’s superclasses. In the elaboration result, type variables are
substituted with concrete types, and prerequisites are replaced with their corresponding evidence.
The elaboration for constraint solving of superclasses (TCSUPER) is not presented here, but it simply
projects an element out of the subclass evidence to obtain the superclass evidence.
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Il TER Y~ E (Constraint Solving And Elaboration)
TCINST

(Vag Kg. Yj ~ x; :>TCT)->E;E_I’€FI
Tes Tz tkp ~ B I Tes T Eg yilt'k/ak] ~ F;

CcONCATCONTAINL
I TesTFEg; po Oy pr~p2~~ E

InToiTEq TC o[tk /a] ~ (E[By/ar|[Fj /x| E/[Br/ar] [F;/x;]) InlesTEg po s, p2r o E
CONTAINDECAY SPLITCONCAT
FI;TC;F):%posllOp1WE Ho - th Ie;THp U I1; T T Eg; Split (Aa:k. 1) po p1 p2~ E
IpTes Ty po s, prF I To; T (Lift (Aa: k. 1) po) Oc p1 ~ pg ~ E
LIFTCONTAIN
I};I‘C;Ftho< p1~E Ie; Tk po: R Ie;T,a:kgFTiky ~ A r—KOWK‘.
kg~ K E, = \a Ky *. (mE) [Aa:Ky.a" A] E;=Ad :Ki—*.(mE)[Aa:Ky.a' Al

I1; Ie; Tz (Lift (Aa: k. 7) po) s, (Lift (Aa:xo.7) p1) ~ (E,, E;)
ALLCONTAIN
FI;I“C;F#«y;pOSCMWF IpIesTE All(Aa:k.¢) py~ E Ie;T,a:kkF:C A kK~ K

I; I TR All(Aa:k.y) po~s (7m0 F) [La:K. Al E

IND
l"c;l"l—rizlcw/'—\,le[:n] F K~ K IesToap:Las ik apa; R Fa, Oy (ar>a;) ~a;:C~ B
Te;T,a;a, :RFa; Oy an~(£’,~>fil€[:n]):Cw B,
As=Vay:xa,:K, apa;ay: LK. B — B, — (®{}) = (am ap) — am a;
- i€[:n]
—ke(:
I Ies TRy (fﬁT]]E[lJ)@n ooy~ G oy,
- i€[:n]
_]E[ i+1] ——ke|i+1:n] ——I€e[:n] ,
I TosTEg (Ge T ) On (f’k” Y~ ) E
i€[:n]|
” ) i —jel:i] [:i+1] —Ileli+1:n] L
E” = ((xs [® {}] [Ai] [{A; N I{A H [{A HE)E) () Xi

F=Aap: (LX) Axs: A Ax;am {}.E”

LT T Fg Ind (Gog My e 1

Fig. 11. Selected elaboration rules for constraint solving

5.2 Interpretation of Row Constraints

We first discuss the elaboration of rows. Rule Row in Fig. 9 elaborates rows to type-level lists in the
target. As previously mentioned, F€®’s type-level lists are much simpler than rows, with labels
and commutativity erased. For example, rule ProD discards the commutativity annotation p. If a
function is polymorphic over labels or commutativity in the source, the elaboration turns them
into type abstractions taking empty products (rule comm). The corresponding kind elaboration
rules elaborate R¥ to L, and both L and U to * in Fig. 10.

Next, as row constraints are used primarily for records and variants, we follow Morris and
McKinna [2019] and interpret row constraints as a collection of functions operating on products
and sums. Therefore, the type elaboration rule conTAIN in Fig. 9 elaborates row containment into a
tuple. Compared to Morris and McKinna [2019], both components of our tuple are polymorphic
over a type function. This function corresponds to the target’s type-level mappings, a crucial feature
in our higher-kinded system that is essential for solving Lift and All constraints. Then, the first
function takes a product of the larger row and produces a product of the smaller one, effectively
performing a projection. Similarly, the second function takes a sum of the smaller row and produces
a sum of the larger one, performing an injection. The elaboration rule for row concatenation
(given in the appendix) is similar, producing a product of four elements: the first two manage
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concatenation for products and elimination for sums respectively, while the latter two provide
corresponding containment evidence.

Fig. 11 presents two example rules for row constraints. Rule concaTCoNTAINL simply selects the
containment evidence from the combination evidence. Rule conTaAINDECAY discards the commuta-
tivity information and produces the same evidence as its premise. Concrete evidence is generated
in the elaboration of the constraint solving rule concATCONCRETE for concrete rows, which can be
found in the appendix.

Returning to the term elaboration rules in Fig. 3, we can now see that rules involving row
constraints (PRj, CONCAT, INJ, and ELIM) simply select the appropriate evidence entries for the
operations being performed. In these cases, the type-level mapping is just the identity type lambda,
as the rows of the products and sums already match those specified in the constraints.

Lift and Split. Fig. 11 also includes constraint solving elaboration for Lift, where the type-level
mappings in row constraints are crucial. Specifically, rule LIFTCONTAIN projects out the two entries
from the original evidence. It then wraps them in type abstractions, applying these components to
type lambdas that compose the outer mapping «” with the current mapping

The type elaboration for Split is identical to that of its associated concatenation constraint with
the left side lifted. As a result, rule spLiTCoNCAT simply produces the evidence from the premise.

All The AvLL type elaboration rule in Fig. 9 elaborates All to a product type. Here, the type-
level mapping generates a type-level list, where each entry corresponds to evidence for i with
substituted by the corresponding entry in the row p. The resulting product allows us to access the
evidence for any specific entry. Our encoding makes the elaboration for All constraints mostly
straightforward, primarily involving the creation and projection of products.

As an example, rule ALLCONTAIN in Fig. 11 extracts the projection function from the containment
evidence, applies it to the elaborated type lambda, and then to the All evidence for the larger row
p1, effectively projecting out the subset of fields for the smaller row py.

5.3 Elaboration of ind

We now consider the elaboration of ind, which performs a fold based on a row type. Elaborating
this term is non-trivial, as the types of the row constraints and the accumulator depend on the
portion of the row processed so far. One straightforward approach is to incorporate a similar
construct directly into the target calculus, elaborating ind to this new construct. However, this
would complicate the target calculus and make compilation to more standard target calculi more
challenging.

In this work, we explore an alternative compilation strategy for ind. Specifically, we introduce
a new form of constraint, Ind p. When ind is used, the Ind constraint is required and can be
passed around just like any other constraint, as specified in the IND typing rule in Fig. 3. During
elaboration, when Ind p is resolved, it produces an evidence term I that performs the fold of p.
The term elaboration then simply applies it to the type lambda, step function, and initial value.
With this elaboration strategy for ind, it is worth noting that the examples from §2 where we
used ind would now require the appropriate Ind constraints in their types. We are interested in
potentially hiding these constraints in an actual implementation using the approach of total type
classes [Weingart et al. 2024], but we leave this for future work.

Rule 1nD in Fig. 9 specifies the type elaboration rule for Ind. The elaborated type is polymorphic
over the type lambda «¢,,. Like the ind term, it accepts a step function and an initial value, then
produces a final result based on the type function and elaborated row. The step function A; is
polymorphic over various components of the row and takes the left and right constraint evidence, in
addition to a unit value as the elaborated label and the accumulator, producing the next accumulator.
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Ic;Trog <oy~ F (Subtyping And Elaboration)
DECAY
PRODROW IesTHE pix~ A
Ie; Tk po =y p1~ Fp, Fs Ie;THIT, po ik Ie;THpp:U Ho = [
IosTRID, po <:IDy p1~ Fy [Aa: . al IosTRE,, p< By p~rAx:Ax
Fig. 12. Subtyping and elaboration
IesTrpo =y p1~ Fp, Fy (Row Equivalence And Elaboration)
coMMm
r—rrp permutes [:n] for & o p’ permutes [:n] for & p inverts p’ on [:n]
FC;I‘I—(fi>Ti ) RS~ (A, ly‘, Fi~s K Fy=Aa:K—>x.Ax: ® (a[{A; ‘:”‘r]] ). (i x
I~_\uI\+—>*/\~u||'4"”‘,|] C'ls‘e\"mw”‘//’}

rc;ri-('fi'>fi >—c<§1‘>fz >“")f/hh‘

Fig. 13. Row equivalence and elaboration

The constraint solving rule IND in Fig. 11 resolves Ind for concrete rows. The first five hypotheses
collect types and kinds needed when describing the evidence. Since each step of the fold performed
by ind is provided two concatenation constraints, the next two hypotheses collect the evidence for
these. £’ then assembles the body of the evidence function, in which the step function argument x
(of type A;) is applied once for each entry in the row, performing the fold. Each repetition within
E’”’s comprehension passes five type arguments: the unit type for the erased label type, the type of
the current row entry, and the three sub-components of the larger row. It also passes the correct
left and right concatenation constraint evidence, then a unit for the erased label term. Finally, F
wraps the body £ in a type abstraction, as well as abstractions taking the step function and the
initial value term respectively.

5.4 Subtyping and Row Equivalence

Fig. 12 and 13 present selected elaborations for subtyping and row equivalence. Subtyping produces
functions that convert a term from the elaborated subtype to the elaborated supertype, while row
equivalence produces two functions for conversions involving products and sums, respectively.

Rule pPrRODROW uses the elaboration for products from the equivalence relation, and applies it to
the identity type lambda. While the type-level mapping is not useful here, it is necessary for cases
such as All. Rule pecay simply produces an identity function, since commutativities are erased.
The elaboration rule comm for commutative rows re-orders the entries within the elaboration to
match the re-ordering of the entries in the source row.

5.5 Elaboration Soundness

In this section, we prove that our elaboration is sound, specifically with row theory 75, beginning
with soundness of types and constraints:

Theorem 5.1 (Elaboration Soundness of Types and Constraints).

(Kinding) If Te;Tro:k~ A, andFx~ K, andTc+T ~» A, then AFA: K.

(Row Equivalence) If T; T+ po =, p1 wf‘,,, Fo,Te; T po: R~ A, Tes Tk p1 iR o By bk v K
andTc kT~ A, thenAl—F :Ya: K> *. (® (a[[A])) = ® (a[B]) and
ArFs:Va:Ki— *.( u||~\” — & ( aIIF”,.

(Subtyping) If rc,rl-O'() <:o1~~F, Ie;Trog:k~ A TesThopik~ B, bk~ %, and Tcr T~ A,
then A+ F: A — B,
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Table 1. Code statistics for the Lean 4 mechanization

Module Description LOC #Def #Thm
Source Language (1)
Syntax Kinds, types, terms, programs, and environments 157 21 /
Semantics Kinding, typing, constraint solving, elaboration, etc. 1052 54 /
Lemmas Auxiliary lemmas and properties 3665 4 121
Theorems Elaboration soundness 7430 / 14

Target Language (F&®

Syntax Kinds, types, terms, and environments 175 13 /
Semantics Kinding, typing, and operational semantics 697 59 /
Lemmas Auxiliary lemmas and properties 4042 4 277
Type Reduction  Strong normalization, confluence, correspondence to equivalence, etc. 4965 8 182
Theorems Syntactic type safety 566 / 17
Total 22749 163 611

(Constraint Solving) If I1;Te;TEq iy~ E, T THY:C~ A, and T b T~ A, then A+ E: A.

This theorem has several parts for kinding, row equivalence, subtyping, and constraint solving,
respectively. The judgement I'c - T" ~» A states that the environment I is well-formed under the class
environment I'c and elaborates to the target environment A; for clarity, we implicitly assume all
class and instance environments are well-formed. The proof of the constraint solving part is notably
lengthy, primarily due to the verbosity of the row elaboration rules. The target’s equivalence rules
(ListTAprComp and LisTAPPID) for type-level lists are essential in the proofs for Lift.

Finally, we prove program and term elaboration is sound; we present the statement for terms:

Theorem 5.2 (Elaboration Soundness of Terms).
IfITe;TeM:io~E, andIc;Tro:x~> A and Te kT~ A, then AFE: A,

6 Mechanization

We have formalized the metatheory of 1> and F&? using the Lean 4 proof assistant [Moura and
Ullrich 2021], and the proofs are available in the artifact [Toohey et al. 2025]. Table 1 summarizes
the structure and statistics of our mechanization. Our formalization adopts the locally nameless
representation [Charguéraud 2011] for handling binding and leverages the Aesop proof search
tactic [Limperg and From 2023] for proof automation. The proof of strong normalization for F&®’s
type reduction took inspiration from a strong normalization proof for the simply typed lambda
calculus in Lean [Mameche 2019], and this was used to establish confluence by importing a prior
proof of Newman’s lemma [van Kampen 2025].

There were two notable obstacles we encountered and solved in the mechanization process.
First, our formalization employs nested inductive types to define rows in 4> and type-level lists in
F&® Unfortunately, the standard induction tactic in Lean 4 does not automatically handle nested
inductive types. We addressed this by defining specialized induction principles for these constructs
that explicitly deal with inductive reasoning on lists.

Second, we define the type equivalence judgement as a proposition. To prove that type equivalence
(A + A= B) implies the equivalence closure of type reduction (A F A <" B), we needed to establish
that any type equivalence proof could be transformed into a derivation where symmetry (symm)
and transitivity (TRANS) rules are applied only at the top level. A natural approach would be to
define a proposition indexed by such a derivation to capture this property. However, this does
not work because Lean’s metatheory implies proof irrelevance, rendering multiple proofs of the
same type equivalence judgement definitionally indistinguishable. To overcome this limitation, we
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Table 2. B2T2 table API functions

Category Supported Description

Constructors 9/9 Creating, combining, and expanding tables.
Properties 3/3 Querying table shape information.

Access subcomponents 3/4 Extracting a row, value, or column.

Subtable 8/10 Extracting a subset of the table.

Ordering” 3/3 Sorting. orderBy requires existential types.
Aggregate® 4/4 Reducing multiple rows into fewer summary rows.
Missing values 3/3 Handling for optional values.

Data cleaning 2/2 Pivoting longer or wider.

Utilities* 11/11 Misc. renameColumns also needs more row operators.

introduced a new judgement A+ A = B that enforces the desired property by construction, and
prove equivalence between A+ A =g B and A+ A = B, complicating the metatheory development.

7 Evaluation

The Brown Benchmark for Table Types (B2T2) [Lu et al. 2021] provides criteria for evaluating type
systems designed for tabular data. Given that record types are a well-known encoding for table
types, we evaluate our type system against the B2T2 set of table API functions. For the purposes of
this evaluation we assume support for lists, though they were not included in our formalism.

Table 2 lists the B2T2 benchmark’s table API functions. We represent table schemas (column
names and their corresponding types) as rows, and tables as lists of products. Our system offers
several benefits: First, extensible rows readily express table schemas, while type classes provide
necessary methods for operations like equality and comparison, and All enables defining generic
functions over rows whose fields all possess a certain property. Moreover, our commutativity
hierarchy allows us to use commutativity for functions where ordering is irrelevant, and non-
commutativity when table columns must be ordered and folded deterministically. Lastly, our Lift
and Split enable type-level updates to rows (similar to the unlift example in §2.2).

We discuss a few examples. The left/oin constructor function takes two tables, t7and 2. It merges
fields from t2 into 7 based on the shared columns, creating a new table. Fields are filled with
Nothing if no matches are found in ¢2. The function has type:

leftjoin :¥(rc rl’ rr’ rlrr r:R) (pu:U).
(AllLEq re,rc ©y rl’~rlrc ©y e’ ~rr,rl ©, Lift Option rr’ ~r)
= List (I, rl) — List (1T, rr) — List (1T, r)

Here, All requires that the rc row in the join must implement Eq. The row constraints describe the
relationships between different variables, with the last one specifying that the output table’s row r
consists of the left row rl, concatenated with an Option-Lifted version of rr’ in the right row.

As another example, the data cleaning function pivotWider converts a table containing a key
column and a value column into to a wider table. The wider table will have a column for each
distinct case of the key variant. The entries in these new columns are the corresponding entries
from the original value column, if such an entry exists. We have the function’s type as:

pivotWider :¥(r rk rr r’:R) (lk lv: L) (t:%) (p:U).
(ALl Eq rr,{lk> >, (Lift (Const Unit) rk),lvet) ©, rr~r,rr O, Lift (Const (Option t)) rk~r’)
= List (11, r) = [ k| — |Iv| — List (1T, r’)

Here, row r consists of lk for the key, [v for the value, and rr for the rest. All requires all entries
in rr to satisfy Eq so that rows, identical except for their keys and values, can be combined in the
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result. This example also demonstrates the utility of rows for both products and sums: the rk row
is Lifted to units within the [k variant, while it is Liffed to Option t in the r’ product in the result.

Lastly, we note that our system cannot implement three functions that access columns based
on Int or Bool inputs, as they require types to depend on terms (i.e. dependent types). And our
implementations for three other functions (their categories are marked with *) are slightly weaker
than their specified requirements. For example, while two functions in the benchmark process
multiple columns simultaneously, our system can only operate on a single column at a time. Despite
lacking more advanced types for these cases, we believe that this evaluation effectively demonstrates
the utility of extensible rows with type classes for table types.

8 Related Work

Row types and polymorphism. Morris and McKinna [2019] propose Rose, a general framework
for abstracting and unifying row theories, which Hubers and Morris [2023] later extend to support
generic programming over rows. Our calculus builds upon Rose, but extends it in several ways.
First, we support type classes, featuring a novel form of All constraints that allow us to express
class constraints over polymorphic rows. In contrast, Hubers and Morris [2023] applies the same
function uniformly across all fields of a row. As a result, it requires explicit passing, selection,
and application of evidence, similar to our target calculus. Moreover, while their work supports
three language primitives (called syn, ana, and fold) for generic operations on records and variants,
our ind construct can be used in place of all three. Furthermore, we support row commutativity
annotations over records, variants, and constraints, as well as commutativity polymorphism, and
the ability to split rows according to type shapes using Split.

Generic programming over algebraic data types (ADTs). Generic programming has a rich
literature. Of particular relevance to our work, there are several attempts to support generic folding
operations over products and ADTs. Chlipala [2010] introduces a folder type family for type-level
records, enabling generic operations over record structures. However, their approach does not
specify the actual implementation of the folder function and relies on field name ordering as hints
for permutations. Other relevant works include the Typable type class by Limmel and Jones [2003]
for generic traversals over ADTs, and an All type family over ADTs by de Vries and Loh [2014] that
is semantically similar to our All constraint. However, these approaches cannot easily extend or
mutate field types or orders due to the inherent limitations of ADTs.

Tabular types. Tabular type systems are an umbrella term for type systems supporting generic
programming over tabular data. Lu et al. [2021] introduces the B2T2 benchmark suite for tabular
type systems. It’s a well-known approach to use polymorphic records and variants to encode tabular
data. Our evaluation (§7) shows that 477 can express a substantial portion of tabular operations
in the benchmark. Another natural approach is to use dependent types, as demonstrated by an
implementation of the benchmark in Idris2 by Wright et al. [2022], which leverages the prover’s
proof search capabilities for evidence reconstruction.
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